File size: 11,590 Bytes
e2ed517
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
import argparse
import logging
import os
import pprint
import random

import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.optim import AdamW
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter

from dataset.hypersim import Hypersim
from dataset.kitti import KITTI
from dataset.vkitti2 import VKITTI2
from dataset.pbr import PBRDataset
from depth_anything_v2.dpt import DepthAnythingV2
from util.dist_helper import setup_distributed
from util.loss import SiLogLoss
from util.metric import eval_depth
from util.utils import init_log


def rotate_sample(img, depth, valid_mask, angle):
    """

    Rotate image, depth map and valid mask by specified angle (90, 180, or 270 degrees)

    """
    k = angle // 90  # k=1 for 90°, k=2 for 180°, k=3 for 270°
    img = torch.rot90(img, k, dims=[-2, -1])
    depth = torch.rot90(depth, k, dims=[-2, -1])
    valid_mask = torch.rot90(valid_mask, k, dims=[-2, -1])
    return img, depth, valid_mask


parser = argparse.ArgumentParser(description='Depth Anything V2 for Metric Depth Estimation')

parser.add_argument('--encoder', default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
parser.add_argument('--dataset', default='hypersim', choices=['hypersim', 'vkitti', 'pbr'])
parser.add_argument('--img-size', default=512, type=int)
parser.add_argument('--min-depth', default=0.001, type=float)
parser.add_argument('--max-depth', default=1.0, type=float)
parser.add_argument('--epochs', default=40, type=int)
parser.add_argument('--bs', default=2, type=int)
parser.add_argument('--lr', default=0.000005, type=float)
parser.add_argument('--pretrained-from', type=str)
parser.add_argument('--save-path', type=str, required=True)
parser.add_argument('--local-rank', default=0, type=int)
parser.add_argument('--port', default=None, type=int)
parser.add_argument('--flip-prob', default=0.5, type=float, help='Probability of horizontal flip')
parser.add_argument('--rotate-prob', default=0.75, type=float, help='Probability of rotation')


def main():
    args = parser.parse_args()
    rank = 0
    
    logger = init_log('global', logging.INFO)
    logger.propagate = 0
    
    rank, world_size = setup_distributed(port=args.port)
    
    if rank == 0:
        all_args = {**vars(args), 'ngpus': world_size}
        logger.info('{}\n'.format(pprint.pformat(all_args)))
        writer = SummaryWriter(args.save_path)
    
    cudnn.enabled = True
    cudnn.benchmark = True
    
    size = (args.img_size, args.img_size)
    if args.dataset == 'hypersim':
        trainset = Hypersim('dataset/splits/hypersim/train.txt', 'train', size=size)
    elif args.dataset == 'vkitti':
        trainset = VKITTI2('dataset/splits/vkitti2/train.txt', 'train', size=size)
    elif args.dataset == 'pbr':
        trainset = PBRDataset('dataset/splits/pbr/train.txt', 'train', size=size)
    else:
        raise NotImplementedError
    trainsampler = torch.utils.data.distributed.DistributedSampler(trainset)
    trainloader = DataLoader(trainset, batch_size=args.bs, pin_memory=True, num_workers=4, drop_last=True, sampler=trainsampler)
    
    if args.dataset == 'hypersim':
        valset = Hypersim('dataset/splits/hypersim/val.txt', 'val', size=size)
    elif args.dataset == 'vkitti':
        valset = KITTI('dataset/splits/kitti/val.txt', 'val', size=size)
    elif args.dataset == 'pbr':
        valset = PBRDataset('dataset/splits/pbr/val.txt', 'val', size=size)
    else:
        raise NotImplementedError
    valsampler = torch.utils.data.distributed.DistributedSampler(valset)
    valloader = DataLoader(valset, batch_size=1, pin_memory=True, num_workers=4, drop_last=True, sampler=valsampler)
    
    local_rank = int(os.environ["LOCAL_RANK"])
    
    model_configs = {
        'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
        'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
        'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
        'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
    }
    model = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth})
    
    if args.pretrained_from:
        model.load_state_dict({k: v for k, v in torch.load(args.pretrained_from, map_location='cpu').items() if 'pretrained' in k}, strict=False)
    
    model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
    model.cuda(local_rank)
    model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], broadcast_buffers=False,
                                                     output_device=local_rank, find_unused_parameters=True)
    
    criterion = SiLogLoss().cuda(local_rank)
    
    optimizer = AdamW([{'params': [param for name, param in model.named_parameters() if 'pretrained' in name], 'lr': args.lr},
                      {'params': [param for name, param in model.named_parameters() if 'pretrained' not in name], 'lr': args.lr * 10.0}],
                     lr=args.lr, betas=(0.9, 0.999), weight_decay=0.01)
    
    total_iters = args.epochs * len(trainloader)
    
    # Initialize previous_best dictionary here
    previous_best = {'d1': 0, 'd2': 0, 'd3': 0, 'abs_rel': 100, 'sq_rel': 100, 
                    'rmse': 100, 'rmse_log': 100, 'log10': 100, 'silog': 100}
    
    # Load checkpoint if exists
    if os.path.exists(os.path.join(args.save_path, 'latest.pth')):
        checkpoint = torch.load(os.path.join(args.save_path, 'latest.pth'), map_location='cpu')
        model.load_state_dict(checkpoint['model'])
        optimizer.load_state_dict(checkpoint['optimizer'])
        previous_best = checkpoint['previous_best']
        start_epoch = checkpoint['epoch'] + 1
    else:
        start_epoch = 0

    for epoch in range(start_epoch, args.epochs):
        if rank == 0:
            logger.info('===========> Epoch: {:}/{:}, d1: {:.3f}, d2: {:.3f}, d3: {:.3f}'.format(
                epoch, args.epochs, previous_best['d1'], previous_best['d2'], previous_best['d3']))
            logger.info('===========> Epoch: {:}/{:}, abs_rel: {:.3f}, sq_rel: {:.3f}, rmse: {:.3f}, rmse_log: {:.3f}, '
                      'log10: {:.3f}, silog: {:.3f}'.format(
                          epoch, args.epochs, previous_best['abs_rel'], previous_best['sq_rel'], previous_best['rmse'],
                          previous_best['rmse_log'], previous_best['log10'], previous_best['silog']))
        
        trainloader.sampler.set_epoch(epoch + 1)
        
        model.train()
        total_loss = 0
        
        for i, sample in enumerate(trainloader):
            optimizer.zero_grad()
            
            img, depth, valid_mask = sample['image'].cuda(), sample['depth'].cuda(), sample['valid_mask'].cuda()
            
            # Apply random horizontal flip
            if random.random() < 0.5:
                img = img.flip(-1)
                depth = depth.flip(-1)
                valid_mask = valid_mask.flip(-1)
            
            # Apply random rotation augmentation
            rotation_prob = random.random()
            if rotation_prob < 0.75:
                if rotation_prob < 0.25:  # 90°
                    img, depth, valid_mask = rotate_sample(img, depth, valid_mask, 90)
                elif rotation_prob < 0.5:  # 180°
                    img, depth, valid_mask = rotate_sample(img, depth, valid_mask, 180)
                else:  # 270°
                    img, depth, valid_mask = rotate_sample(img, depth, valid_mask, 270)
            
            pred = model(img)
            
            loss = criterion(pred, depth, (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth))
            
            loss.backward()
            optimizer.step()
            
            total_loss += loss.item()
            
            iters = epoch * len(trainloader) + i
            
            lr = args.lr * (1 - iters / total_iters) ** 0.9
            
            optimizer.param_groups[0]["lr"] = lr
            optimizer.param_groups[1]["lr"] = lr * 10.0
            
            if rank == 0:
                writer.add_scalar('train/loss', loss.item(), iters)
            
            if rank == 0 and i % 100 == 0:
                logger.info('Iter: {}/{}, LR: {:.7f}, Loss: {:.3f}'.format(
                    i, len(trainloader), optimizer.param_groups[0]['lr'], loss.item()))
        
        model.eval()
        
        results = {'d1': torch.tensor([0.0]).cuda(), 'd2': torch.tensor([0.0]).cuda(), 'd3': torch.tensor([0.0]).cuda(),
                  'abs_rel': torch.tensor([0.0]).cuda(), 'sq_rel': torch.tensor([0.0]).cuda(), 'rmse': torch.tensor([0.0]).cuda(),
                  'rmse_log': torch.tensor([0.0]).cuda(), 'log10': torch.tensor([0.0]).cuda(), 'silog': torch.tensor([0.0]).cuda()}
        nsamples = torch.tensor([0.0]).cuda()
        
        for i, sample in enumerate(valloader):
            img, depth, valid_mask = sample['image'].cuda().float(), sample['depth'].cuda()[0], sample['valid_mask'].cuda()[0]
            
            with torch.no_grad():
                pred = model(img)
                pred = F.interpolate(pred[:, None], depth.shape[-2:], mode='bilinear', align_corners=True)[0, 0]
            
            valid_mask = (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth)
            
            if valid_mask.sum() < 10:
                continue
            
            cur_results = eval_depth(pred[valid_mask], depth[valid_mask])
            
            for k in results.keys():
                results[k] += cur_results[k]
            nsamples += 1
        
        torch.distributed.barrier()
        
        for k in results.keys():
            dist.reduce(results[k], dst=0)
        dist.reduce(nsamples, dst=0)
        
        if rank == 0:
            logger.info('==========================================================================================')
            logger.info('{:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}'.format(*tuple(results.keys())))
            logger.info('{:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}'.format(
                *tuple([(v / nsamples).item() for v in results.values()])))
            logger.info('==========================================================================================')
            print()
            
            for name, metric in results.items():
                writer.add_scalar(f'eval/{name}', (metric / nsamples).item(), epoch)
        
        for k in results.keys():
            if k in ['d1', 'd2', 'd3']:
                previous_best[k] = max(previous_best[k], (results[k] / nsamples).item())
            else:
                previous_best[k] = min(previous_best[k], (results[k] / nsamples).item())
        
        if rank == 0:
            checkpoint = {
                'model': model.state_dict(),
                'optimizer': optimizer.state_dict(),
                'epoch': epoch,
                'previous_best': previous_best,
            }
            torch.save(checkpoint, os.path.join(args.save_path, 'latest.pth'))


if __name__ == '__main__':
    main()