Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,590 Bytes
e2ed517 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
import argparse
import logging
import os
import pprint
import random
import numpy as np
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.utils.data import DataLoader
from torch.optim import AdamW
import torch.nn.functional as F
from torch.utils.tensorboard import SummaryWriter
from dataset.hypersim import Hypersim
from dataset.kitti import KITTI
from dataset.vkitti2 import VKITTI2
from dataset.pbr import PBRDataset
from depth_anything_v2.dpt import DepthAnythingV2
from util.dist_helper import setup_distributed
from util.loss import SiLogLoss
from util.metric import eval_depth
from util.utils import init_log
def rotate_sample(img, depth, valid_mask, angle):
"""
Rotate image, depth map and valid mask by specified angle (90, 180, or 270 degrees)
"""
k = angle // 90 # k=1 for 90°, k=2 for 180°, k=3 for 270°
img = torch.rot90(img, k, dims=[-2, -1])
depth = torch.rot90(depth, k, dims=[-2, -1])
valid_mask = torch.rot90(valid_mask, k, dims=[-2, -1])
return img, depth, valid_mask
parser = argparse.ArgumentParser(description='Depth Anything V2 for Metric Depth Estimation')
parser.add_argument('--encoder', default='vitl', choices=['vits', 'vitb', 'vitl', 'vitg'])
parser.add_argument('--dataset', default='hypersim', choices=['hypersim', 'vkitti', 'pbr'])
parser.add_argument('--img-size', default=512, type=int)
parser.add_argument('--min-depth', default=0.001, type=float)
parser.add_argument('--max-depth', default=1.0, type=float)
parser.add_argument('--epochs', default=40, type=int)
parser.add_argument('--bs', default=2, type=int)
parser.add_argument('--lr', default=0.000005, type=float)
parser.add_argument('--pretrained-from', type=str)
parser.add_argument('--save-path', type=str, required=True)
parser.add_argument('--local-rank', default=0, type=int)
parser.add_argument('--port', default=None, type=int)
parser.add_argument('--flip-prob', default=0.5, type=float, help='Probability of horizontal flip')
parser.add_argument('--rotate-prob', default=0.75, type=float, help='Probability of rotation')
def main():
args = parser.parse_args()
rank = 0
logger = init_log('global', logging.INFO)
logger.propagate = 0
rank, world_size = setup_distributed(port=args.port)
if rank == 0:
all_args = {**vars(args), 'ngpus': world_size}
logger.info('{}\n'.format(pprint.pformat(all_args)))
writer = SummaryWriter(args.save_path)
cudnn.enabled = True
cudnn.benchmark = True
size = (args.img_size, args.img_size)
if args.dataset == 'hypersim':
trainset = Hypersim('dataset/splits/hypersim/train.txt', 'train', size=size)
elif args.dataset == 'vkitti':
trainset = VKITTI2('dataset/splits/vkitti2/train.txt', 'train', size=size)
elif args.dataset == 'pbr':
trainset = PBRDataset('dataset/splits/pbr/train.txt', 'train', size=size)
else:
raise NotImplementedError
trainsampler = torch.utils.data.distributed.DistributedSampler(trainset)
trainloader = DataLoader(trainset, batch_size=args.bs, pin_memory=True, num_workers=4, drop_last=True, sampler=trainsampler)
if args.dataset == 'hypersim':
valset = Hypersim('dataset/splits/hypersim/val.txt', 'val', size=size)
elif args.dataset == 'vkitti':
valset = KITTI('dataset/splits/kitti/val.txt', 'val', size=size)
elif args.dataset == 'pbr':
valset = PBRDataset('dataset/splits/pbr/val.txt', 'val', size=size)
else:
raise NotImplementedError
valsampler = torch.utils.data.distributed.DistributedSampler(valset)
valloader = DataLoader(valset, batch_size=1, pin_memory=True, num_workers=4, drop_last=True, sampler=valsampler)
local_rank = int(os.environ["LOCAL_RANK"])
model_configs = {
'vits': {'encoder': 'vits', 'features': 64, 'out_channels': [48, 96, 192, 384]},
'vitb': {'encoder': 'vitb', 'features': 128, 'out_channels': [96, 192, 384, 768]},
'vitl': {'encoder': 'vitl', 'features': 256, 'out_channels': [256, 512, 1024, 1024]},
'vitg': {'encoder': 'vitg', 'features': 384, 'out_channels': [1536, 1536, 1536, 1536]}
}
model = DepthAnythingV2(**{**model_configs[args.encoder], 'max_depth': args.max_depth})
if args.pretrained_from:
model.load_state_dict({k: v for k, v in torch.load(args.pretrained_from, map_location='cpu').items() if 'pretrained' in k}, strict=False)
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model.cuda(local_rank)
model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[local_rank], broadcast_buffers=False,
output_device=local_rank, find_unused_parameters=True)
criterion = SiLogLoss().cuda(local_rank)
optimizer = AdamW([{'params': [param for name, param in model.named_parameters() if 'pretrained' in name], 'lr': args.lr},
{'params': [param for name, param in model.named_parameters() if 'pretrained' not in name], 'lr': args.lr * 10.0}],
lr=args.lr, betas=(0.9, 0.999), weight_decay=0.01)
total_iters = args.epochs * len(trainloader)
# Initialize previous_best dictionary here
previous_best = {'d1': 0, 'd2': 0, 'd3': 0, 'abs_rel': 100, 'sq_rel': 100,
'rmse': 100, 'rmse_log': 100, 'log10': 100, 'silog': 100}
# Load checkpoint if exists
if os.path.exists(os.path.join(args.save_path, 'latest.pth')):
checkpoint = torch.load(os.path.join(args.save_path, 'latest.pth'), map_location='cpu')
model.load_state_dict(checkpoint['model'])
optimizer.load_state_dict(checkpoint['optimizer'])
previous_best = checkpoint['previous_best']
start_epoch = checkpoint['epoch'] + 1
else:
start_epoch = 0
for epoch in range(start_epoch, args.epochs):
if rank == 0:
logger.info('===========> Epoch: {:}/{:}, d1: {:.3f}, d2: {:.3f}, d3: {:.3f}'.format(
epoch, args.epochs, previous_best['d1'], previous_best['d2'], previous_best['d3']))
logger.info('===========> Epoch: {:}/{:}, abs_rel: {:.3f}, sq_rel: {:.3f}, rmse: {:.3f}, rmse_log: {:.3f}, '
'log10: {:.3f}, silog: {:.3f}'.format(
epoch, args.epochs, previous_best['abs_rel'], previous_best['sq_rel'], previous_best['rmse'],
previous_best['rmse_log'], previous_best['log10'], previous_best['silog']))
trainloader.sampler.set_epoch(epoch + 1)
model.train()
total_loss = 0
for i, sample in enumerate(trainloader):
optimizer.zero_grad()
img, depth, valid_mask = sample['image'].cuda(), sample['depth'].cuda(), sample['valid_mask'].cuda()
# Apply random horizontal flip
if random.random() < 0.5:
img = img.flip(-1)
depth = depth.flip(-1)
valid_mask = valid_mask.flip(-1)
# Apply random rotation augmentation
rotation_prob = random.random()
if rotation_prob < 0.75:
if rotation_prob < 0.25: # 90°
img, depth, valid_mask = rotate_sample(img, depth, valid_mask, 90)
elif rotation_prob < 0.5: # 180°
img, depth, valid_mask = rotate_sample(img, depth, valid_mask, 180)
else: # 270°
img, depth, valid_mask = rotate_sample(img, depth, valid_mask, 270)
pred = model(img)
loss = criterion(pred, depth, (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth))
loss.backward()
optimizer.step()
total_loss += loss.item()
iters = epoch * len(trainloader) + i
lr = args.lr * (1 - iters / total_iters) ** 0.9
optimizer.param_groups[0]["lr"] = lr
optimizer.param_groups[1]["lr"] = lr * 10.0
if rank == 0:
writer.add_scalar('train/loss', loss.item(), iters)
if rank == 0 and i % 100 == 0:
logger.info('Iter: {}/{}, LR: {:.7f}, Loss: {:.3f}'.format(
i, len(trainloader), optimizer.param_groups[0]['lr'], loss.item()))
model.eval()
results = {'d1': torch.tensor([0.0]).cuda(), 'd2': torch.tensor([0.0]).cuda(), 'd3': torch.tensor([0.0]).cuda(),
'abs_rel': torch.tensor([0.0]).cuda(), 'sq_rel': torch.tensor([0.0]).cuda(), 'rmse': torch.tensor([0.0]).cuda(),
'rmse_log': torch.tensor([0.0]).cuda(), 'log10': torch.tensor([0.0]).cuda(), 'silog': torch.tensor([0.0]).cuda()}
nsamples = torch.tensor([0.0]).cuda()
for i, sample in enumerate(valloader):
img, depth, valid_mask = sample['image'].cuda().float(), sample['depth'].cuda()[0], sample['valid_mask'].cuda()[0]
with torch.no_grad():
pred = model(img)
pred = F.interpolate(pred[:, None], depth.shape[-2:], mode='bilinear', align_corners=True)[0, 0]
valid_mask = (valid_mask == 1) & (depth >= args.min_depth) & (depth <= args.max_depth)
if valid_mask.sum() < 10:
continue
cur_results = eval_depth(pred[valid_mask], depth[valid_mask])
for k in results.keys():
results[k] += cur_results[k]
nsamples += 1
torch.distributed.barrier()
for k in results.keys():
dist.reduce(results[k], dst=0)
dist.reduce(nsamples, dst=0)
if rank == 0:
logger.info('==========================================================================================')
logger.info('{:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}, {:>8}'.format(*tuple(results.keys())))
logger.info('{:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}, {:8.3f}'.format(
*tuple([(v / nsamples).item() for v in results.values()])))
logger.info('==========================================================================================')
print()
for name, metric in results.items():
writer.add_scalar(f'eval/{name}', (metric / nsamples).item(), epoch)
for k in results.keys():
if k in ['d1', 'd2', 'd3']:
previous_best[k] = max(previous_best[k], (results[k] / nsamples).item())
else:
previous_best[k] = min(previous_best[k], (results[k] / nsamples).item())
if rank == 0:
checkpoint = {
'model': model.state_dict(),
'optimizer': optimizer.state_dict(),
'epoch': epoch,
'previous_best': previous_best,
}
torch.save(checkpoint, os.path.join(args.save_path, 'latest.pth'))
if __name__ == '__main__':
main()
|