NicolasvonRotz commited on
Commit
6e80072
·
1 Parent(s): fe715d9
Files changed (2) hide show
  1. .gitignore +3 -0
  2. app.py +22 -17
.gitignore ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ parts/
2
+ p/
3
+ Localisations/
app.py CHANGED
@@ -6,23 +6,28 @@ def classify_image(img):
6
  from fastai.vision.all import load_learner
7
  learn = load_learner('lego-bricks-model.pkl')
8
  categories = (
9
- '11214 Bush 3M friction with Cross axle',
10
- '18651 Cross Axle 2M with Snap friction',
11
- '2357 Brick corner 1x2x2',
12
- '3003 Brick 2x2',
13
- '3004 Brick 1x2',
14
- '3005 Brick 1x1',
15
- '3022 Plate 2x2',
16
- '3023 Plate 1x2',
17
- '3024 Plate 1x1',
18
- '3040 Roof Tile 1x2x45deg',
19
- '3069 Flat Tile 1x2',
20
- '32123 half Bush',
21
- '3673 Peg 2M',
22
- '3713 Bush for Cross Axle',
23
- '3794 Plate 1X2 with 1 Knob',
24
- '6632 Technic Lever 3M',
25
- )
 
 
 
 
 
26
  pred,idx,probs = learn.predict(img)
27
  return dict(zip(categories, map(float,probs)))
28
 
 
6
  from fastai.vision.all import load_learner
7
  learn = load_learner('lego-bricks-model.pkl')
8
  categories = (
9
+ #'11214 Bush 3M friction with Cross axle',
10
+ #'18651 Cross Axle 2M with Snap friction',
11
+ #'2357 Brick corner 1x2x2',
12
+ #'3003 Brick 2x2',
13
+ #'3004 Brick 1x2',
14
+ #'3005 Brick 1x1',
15
+ #'3022 Plate 2x2',
16
+ #'3023 Plate 1x2',
17
+ #'3024 Plate 1x1',
18
+ #'3040 Roof Tile 1x2x45deg',
19
+ #'3069 Flat Tile 1x2',
20
+ #'32123 half Bush',
21
+ #'3673 Peg 2M',
22
+ #'3713 Bush for Cross Axle',
23
+ #'3794 Plate 1X2 with 1 Knob',
24
+ #'6632 Technic Lever 3M',
25
+ 'Brick_502','Brick_602','Brick_685','Brick_711','Brick_938','Brick_2499','Brick_2610','Brick_2921','Brick_3479','Brick_3708','Brick_4503',
26
+ 'Brick_4515','Brick_6162','Brick_6182','Brick_6191','Brick_11476','Brick_12897','Brick_12899','Brick_13760','Brick_16615','Brick_18896','Brick_18976',
27
+ 'Brick_21445','Brick_21980','Brick_24869','Brick_26280','Brick_28324','Brick_30357','Brick_30407','Brick_31520','Brick_32124','Brick_41630','Brick_41748',
28
+ 'Brick_42022','Brick_42074','Brick_42604','Brick_45407','Brick_45590','Brick_48002','Brick_50956','Brick_52216','Brick_54671','Brick_81599','Brick_87995',
29
+ 'Brick_88704','Brick_92092','Brick_94318','Brick_303226','Brick_4106592','Brick_4261453'
30
+ )
31
  pred,idx,probs = learn.predict(img)
32
  return dict(zip(categories, map(float,probs)))
33