Spaces:
Running
on
Zero
Running
on
Zero
sdxl flash & stable cascade, improved advanced settings
Browse files
app.py
CHANGED
@@ -1,12 +1,13 @@
|
|
1 |
import torch
|
2 |
-
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import random
|
6 |
import numpy as np
|
|
|
7 |
import spaces
|
8 |
|
9 |
-
HF_TOKEN = os.getenv("HF_TOKEN")
|
10 |
|
11 |
if torch.cuda.is_available():
|
12 |
device = "cuda"
|
@@ -19,41 +20,42 @@ else:
|
|
19 |
MAX_SEED = np.iinfo(np.int32).max
|
20 |
|
21 |
# Initialize the pipelines for each sd model
|
22 |
-
sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained(
|
23 |
-
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16
|
24 |
-
)
|
25 |
sd3_medium_pipe.enable_model_cpu_offload()
|
26 |
|
27 |
-
sd2_1_pipe = StableDiffusionPipeline.from_pretrained(
|
28 |
-
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16
|
29 |
-
)
|
30 |
sd2_1_pipe.enable_model_cpu_offload()
|
31 |
|
32 |
-
sdxl_pipe = StableDiffusionXLPipeline.from_pretrained(
|
33 |
-
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16
|
34 |
-
)
|
35 |
sdxl_pipe.enable_model_cpu_offload()
|
36 |
|
37 |
-
sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained(
|
38 |
-
"sd-community/sdxl-flash", torch_dtype=torch.float16
|
39 |
-
)
|
40 |
sdxl_flash_pipe.enable_model_cpu_offload()
|
41 |
# Ensure sampler uses "trailing" timesteps for sdxl flash.
|
42 |
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing")
|
43 |
|
|
|
|
|
|
|
|
|
|
|
44 |
# Helper function to generate images for a single model
|
45 |
@spaces.GPU(duration=80)
|
46 |
def generate_single_image(
|
47 |
prompt,
|
48 |
negative_prompt,
|
49 |
num_inference_steps,
|
|
|
50 |
height,
|
51 |
width,
|
52 |
-
guidance_scale,
|
53 |
seed,
|
54 |
num_images_per_prompt,
|
55 |
model_choice,
|
56 |
generator,
|
|
|
|
|
|
|
|
|
57 |
):
|
58 |
# Select the correct pipeline based on the model choice
|
59 |
if model_choice == "sd3 medium":
|
@@ -64,19 +66,41 @@ def generate_single_image(
|
|
64 |
pipe = sdxl_pipe
|
65 |
elif model_choice == "sdxl flash":
|
66 |
pipe = sdxl_flash_pipe
|
|
|
|
|
67 |
else:
|
68 |
raise ValueError(f"Invalid model choice: {model_choice}")
|
69 |
|
70 |
-
|
71 |
-
|
72 |
-
|
73 |
-
|
74 |
-
|
75 |
-
|
76 |
-
|
77 |
-
|
78 |
-
|
79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
80 |
|
81 |
return output
|
82 |
|
@@ -85,14 +109,24 @@ def generate_single_image(
|
|
85 |
def generate_arena_images(
|
86 |
prompt,
|
87 |
negative_prompt,
|
88 |
-
|
|
|
|
|
|
|
89 |
height,
|
90 |
width,
|
91 |
-
guidance_scale,
|
92 |
seed,
|
93 |
num_images_per_prompt,
|
94 |
-
|
95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
96 |
progress=gr.Progress(track_tqdm=True),
|
97 |
):
|
98 |
if seed == 0:
|
@@ -101,32 +135,40 @@ def generate_arena_images(
|
|
101 |
generator = torch.Generator().manual_seed(seed)
|
102 |
|
103 |
# Generate images for both models
|
104 |
-
|
105 |
prompt,
|
106 |
negative_prompt,
|
107 |
-
|
|
|
108 |
height,
|
109 |
width,
|
110 |
-
guidance_scale,
|
111 |
seed,
|
112 |
num_images_per_prompt,
|
113 |
-
|
114 |
generator,
|
|
|
|
|
|
|
|
|
115 |
)
|
116 |
-
|
117 |
prompt,
|
118 |
negative_prompt,
|
119 |
-
|
|
|
120 |
height,
|
121 |
width,
|
122 |
-
guidance_scale,
|
123 |
seed,
|
124 |
num_images_per_prompt,
|
125 |
-
|
126 |
generator,
|
|
|
|
|
|
|
|
|
127 |
)
|
128 |
|
129 |
-
return
|
130 |
|
131 |
# Define the image generation function for the Individual tab
|
132 |
@spaces.GPU(duration=80)
|
@@ -134,12 +176,16 @@ def generate_individual_image(
|
|
134 |
prompt,
|
135 |
negative_prompt,
|
136 |
num_inference_steps,
|
|
|
137 |
height,
|
138 |
width,
|
139 |
-
guidance_scale,
|
140 |
seed,
|
141 |
num_images_per_prompt,
|
142 |
model_choice,
|
|
|
|
|
|
|
|
|
143 |
progress=gr.Progress(track_tqdm=True),
|
144 |
):
|
145 |
if seed == 0:
|
@@ -151,23 +197,100 @@ def generate_individual_image(
|
|
151 |
prompt,
|
152 |
negative_prompt,
|
153 |
num_inference_steps,
|
|
|
154 |
height,
|
155 |
width,
|
156 |
-
guidance_scale,
|
157 |
seed,
|
158 |
num_images_per_prompt,
|
159 |
model_choice,
|
160 |
generator,
|
|
|
|
|
|
|
|
|
161 |
)
|
162 |
|
163 |
return output
|
164 |
|
165 |
|
166 |
# Create the Gradio interface
|
167 |
-
|
168 |
-
[
|
169 |
-
|
170 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
171 |
]
|
172 |
|
173 |
css = """
|
@@ -199,44 +322,137 @@ with gr.Blocks(css=css) as demo:
|
|
199 |
info="Describe the image you want",
|
200 |
placeholder="A cat...",
|
201 |
)
|
202 |
-
|
203 |
-
label="Stable Diffusion Model
|
204 |
-
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
|
205 |
value="sd3 medium",
|
206 |
)
|
207 |
-
|
208 |
-
label="Stable Diffusion Model
|
209 |
-
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
|
210 |
value="sdxl",
|
211 |
)
|
212 |
run_button = gr.Button("Run")
|
213 |
-
result_1 = gr.Gallery(label="Generated Images (Model
|
214 |
-
result_2 = gr.Gallery(label="Generated Images (Model
|
215 |
with gr.Accordion("Advanced options", open=False):
|
|
|
|
|
|
|
|
|
|
|
|
|
216 |
with gr.Row():
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
|
237 |
-
|
238 |
-
|
239 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
240 |
with gr.Row():
|
241 |
width = gr.Slider(
|
242 |
label="Width",
|
@@ -272,9 +488,114 @@ with gr.Blocks(css=css) as demo:
|
|
272 |
value=2,
|
273 |
)
|
274 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
275 |
gr.Examples(
|
276 |
-
examples=
|
277 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
outputs=[result_1, result_2],
|
279 |
fn=generate_arena_images,
|
280 |
)
|
@@ -288,14 +609,24 @@ with gr.Blocks(css=css) as demo:
|
|
288 |
inputs=[
|
289 |
prompt,
|
290 |
negative_prompt,
|
291 |
-
|
292 |
-
|
|
|
|
|
293 |
height,
|
294 |
-
|
295 |
seed,
|
296 |
num_images_per_prompt,
|
297 |
-
|
298 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
299 |
],
|
300 |
outputs=[result_1, result_2],
|
301 |
)
|
@@ -310,7 +641,7 @@ with gr.Blocks(css=css) as demo:
|
|
310 |
)
|
311 |
model_choice = gr.Dropdown(
|
312 |
label="Stable Diffusion Model",
|
313 |
-
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash"],
|
314 |
value="sd3 medium",
|
315 |
)
|
316 |
run_button = gr.Button("Run")
|
@@ -331,6 +662,7 @@ with gr.Blocks(css=css) as demo:
|
|
331 |
maximum=50,
|
332 |
value=25,
|
333 |
step=1,
|
|
|
334 |
)
|
335 |
guidance_scale = gr.Slider(
|
336 |
label="Guidance Scale",
|
@@ -339,6 +671,43 @@ with gr.Blocks(css=css) as demo:
|
|
339 |
maximum=10.0,
|
340 |
value=7.5,
|
341 |
step=0.1,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
342 |
)
|
343 |
with gr.Row():
|
344 |
width = gr.Slider(
|
@@ -375,9 +744,65 @@ with gr.Blocks(css=css) as demo:
|
|
375 |
value=2,
|
376 |
)
|
377 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
378 |
gr.Examples(
|
379 |
-
examples=
|
380 |
-
inputs=[
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
381 |
outputs=[result],
|
382 |
fn=generate_individual_image,
|
383 |
)
|
@@ -392,12 +817,16 @@ with gr.Blocks(css=css) as demo:
|
|
392 |
prompt,
|
393 |
negative_prompt,
|
394 |
num_inference_steps,
|
395 |
-
width,
|
396 |
-
height,
|
397 |
guidance_scale,
|
|
|
|
|
398 |
seed,
|
399 |
num_images_per_prompt,
|
400 |
model_choice,
|
|
|
|
|
|
|
|
|
401 |
],
|
402 |
outputs=[result],
|
403 |
)
|
|
|
1 |
import torch
|
2 |
+
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler, StableCascadePriorPipeline, StableCascadeDecoderPipeline
|
3 |
import gradio as gr
|
4 |
import os
|
5 |
import random
|
6 |
import numpy as np
|
7 |
+
from PIL import Image
|
8 |
import spaces
|
9 |
|
10 |
+
HF_TOKEN = os.getenv("HF_TOKEN") # login with hf token to access sd gated models
|
11 |
|
12 |
if torch.cuda.is_available():
|
13 |
device = "cuda"
|
|
|
20 |
MAX_SEED = np.iinfo(np.int32).max
|
21 |
|
22 |
# Initialize the pipelines for each sd model
|
23 |
+
sd3_medium_pipe = StableDiffusion3Pipeline.from_pretrained("stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16)
|
|
|
|
|
24 |
sd3_medium_pipe.enable_model_cpu_offload()
|
25 |
|
26 |
+
sd2_1_pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16)
|
|
|
|
|
27 |
sd2_1_pipe.enable_model_cpu_offload()
|
28 |
|
29 |
+
sdxl_pipe = StableDiffusionXLPipeline.from_pretrained("stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16)
|
|
|
|
|
30 |
sdxl_pipe.enable_model_cpu_offload()
|
31 |
|
32 |
+
sdxl_flash_pipe = StableDiffusionXLPipeline.from_pretrained("sd-community/sdxl-flash", torch_dtype=torch.float16)
|
|
|
|
|
33 |
sdxl_flash_pipe.enable_model_cpu_offload()
|
34 |
# Ensure sampler uses "trailing" timesteps for sdxl flash.
|
35 |
sdxl_flash_pipe.scheduler = DPMSolverSinglestepScheduler.from_config(sdxl_flash_pipe.scheduler.config, timestep_spacing="trailing")
|
36 |
|
37 |
+
stable_cascade_prior_pipe = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
|
38 |
+
stable_cascade_decoder_pipe = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
|
39 |
+
stable_cascade_prior_pipe.enable_model_cpu_offload()
|
40 |
+
stable_cascade_decoder_pipe.enable_model_cpu_offload()
|
41 |
+
|
42 |
# Helper function to generate images for a single model
|
43 |
@spaces.GPU(duration=80)
|
44 |
def generate_single_image(
|
45 |
prompt,
|
46 |
negative_prompt,
|
47 |
num_inference_steps,
|
48 |
+
guidance_scale,
|
49 |
height,
|
50 |
width,
|
|
|
51 |
seed,
|
52 |
num_images_per_prompt,
|
53 |
model_choice,
|
54 |
generator,
|
55 |
+
prior_num_inference_steps=None,
|
56 |
+
prior_guidance_scale=None,
|
57 |
+
decoder_num_inference_steps=None,
|
58 |
+
decoder_guidance_scale=None,
|
59 |
):
|
60 |
# Select the correct pipeline based on the model choice
|
61 |
if model_choice == "sd3 medium":
|
|
|
66 |
pipe = sdxl_pipe
|
67 |
elif model_choice == "sdxl flash":
|
68 |
pipe = sdxl_flash_pipe
|
69 |
+
elif model_choice == "stable cascade":
|
70 |
+
pipe = stable_cascade_prior_pipe
|
71 |
else:
|
72 |
raise ValueError(f"Invalid model choice: {model_choice}")
|
73 |
|
74 |
+
if model_choice == "stable cascade":
|
75 |
+
prior_output = pipe(
|
76 |
+
prompt=prompt,
|
77 |
+
negative_prompt=negative_prompt,
|
78 |
+
num_inference_steps=prior_num_inference_steps,
|
79 |
+
guidance_scale=prior_guidance_scale,
|
80 |
+
height=height,
|
81 |
+
width=width,
|
82 |
+
generator=generator,
|
83 |
+
num_images_per_prompt=num_images_per_prompt,
|
84 |
+
)
|
85 |
+
|
86 |
+
output = stable_cascade_decoder_pipe(
|
87 |
+
image_embeddings=prior_output.image_embeddings.to(torch.float16),
|
88 |
+
prompt=prompt,
|
89 |
+
negative_prompt=negative_prompt,
|
90 |
+
num_inference_steps=decoder_num_inference_steps,
|
91 |
+
guidance_scale=decoder_guidance_scale,
|
92 |
+
).images
|
93 |
+
else:
|
94 |
+
output = pipe(
|
95 |
+
prompt=prompt,
|
96 |
+
negative_prompt=negative_prompt,
|
97 |
+
num_inference_steps=num_inference_steps,
|
98 |
+
guidance_scale=guidance_scale,
|
99 |
+
height=height,
|
100 |
+
width=width,
|
101 |
+
generator=generator,
|
102 |
+
num_images_per_prompt=num_images_per_prompt,
|
103 |
+
).images
|
104 |
|
105 |
return output
|
106 |
|
|
|
109 |
def generate_arena_images(
|
110 |
prompt,
|
111 |
negative_prompt,
|
112 |
+
num_inference_steps_a,
|
113 |
+
guidance_scale_a,
|
114 |
+
num_inference_steps_b,
|
115 |
+
guidance_scale_b,
|
116 |
height,
|
117 |
width,
|
|
|
118 |
seed,
|
119 |
num_images_per_prompt,
|
120 |
+
model_choice_a,
|
121 |
+
model_choice_b,
|
122 |
+
prior_num_inference_steps_a,
|
123 |
+
prior_guidance_scale_a,
|
124 |
+
decoder_num_inference_steps_a,
|
125 |
+
decoder_guidance_scale_a,
|
126 |
+
prior_num_inference_steps_b,
|
127 |
+
prior_guidance_scale_b,
|
128 |
+
decoder_num_inference_steps_b,
|
129 |
+
decoder_guidance_scale_b,
|
130 |
progress=gr.Progress(track_tqdm=True),
|
131 |
):
|
132 |
if seed == 0:
|
|
|
135 |
generator = torch.Generator().manual_seed(seed)
|
136 |
|
137 |
# Generate images for both models
|
138 |
+
images_a = generate_single_image(
|
139 |
prompt,
|
140 |
negative_prompt,
|
141 |
+
num_inference_steps_a,
|
142 |
+
guidance_scale_a,
|
143 |
height,
|
144 |
width,
|
|
|
145 |
seed,
|
146 |
num_images_per_prompt,
|
147 |
+
model_choice_a,
|
148 |
generator,
|
149 |
+
prior_num_inference_steps_a,
|
150 |
+
prior_guidance_scale_a,
|
151 |
+
decoder_num_inference_steps_a,
|
152 |
+
decoder_guidance_scale_a,
|
153 |
)
|
154 |
+
images_b = generate_single_image(
|
155 |
prompt,
|
156 |
negative_prompt,
|
157 |
+
num_inference_steps_b,
|
158 |
+
guidance_scale_b,
|
159 |
height,
|
160 |
width,
|
|
|
161 |
seed,
|
162 |
num_images_per_prompt,
|
163 |
+
model_choice_b,
|
164 |
generator,
|
165 |
+
prior_num_inference_steps_b,
|
166 |
+
prior_guidance_scale_b,
|
167 |
+
decoder_num_inference_steps_b,
|
168 |
+
decoder_guidance_scale_b,
|
169 |
)
|
170 |
|
171 |
+
return images_a, images_b
|
172 |
|
173 |
# Define the image generation function for the Individual tab
|
174 |
@spaces.GPU(duration=80)
|
|
|
176 |
prompt,
|
177 |
negative_prompt,
|
178 |
num_inference_steps,
|
179 |
+
guidance_scale,
|
180 |
height,
|
181 |
width,
|
|
|
182 |
seed,
|
183 |
num_images_per_prompt,
|
184 |
model_choice,
|
185 |
+
prior_num_inference_steps,
|
186 |
+
prior_guidance_scale,
|
187 |
+
decoder_num_inference_steps,
|
188 |
+
decoder_guidance_scale,
|
189 |
progress=gr.Progress(track_tqdm=True),
|
190 |
):
|
191 |
if seed == 0:
|
|
|
197 |
prompt,
|
198 |
negative_prompt,
|
199 |
num_inference_steps,
|
200 |
+
guidance_scale,
|
201 |
height,
|
202 |
width,
|
|
|
203 |
seed,
|
204 |
num_images_per_prompt,
|
205 |
model_choice,
|
206 |
generator,
|
207 |
+
prior_num_inference_steps,
|
208 |
+
prior_guidance_scale,
|
209 |
+
decoder_num_inference_steps,
|
210 |
+
decoder_guidance_scale,
|
211 |
)
|
212 |
|
213 |
return output
|
214 |
|
215 |
|
216 |
# Create the Gradio interface
|
217 |
+
examples_arena = [
|
218 |
+
[
|
219 |
+
"A woman in a red dress singing on top of a building.",
|
220 |
+
"deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
221 |
+
25,
|
222 |
+
7.5,
|
223 |
+
25,
|
224 |
+
7.5,
|
225 |
+
1024,
|
226 |
+
1024,
|
227 |
+
42,
|
228 |
+
2,
|
229 |
+
"sd3 medium",
|
230 |
+
"sdxl",
|
231 |
+
25, #prior_num_inference_steps_a
|
232 |
+
4.0, #prior_guidance_scale_a
|
233 |
+
12, #decoder_num_inference_steps_a
|
234 |
+
0.0, #decoder_guidance_scale_a
|
235 |
+
25, #prior_num_inference_steps_b
|
236 |
+
4.0, #prior_guidance_scale_b
|
237 |
+
12, #decoder_num_inference_steps_b
|
238 |
+
0.0 #decoder_guidance_scale_b
|
239 |
+
],
|
240 |
+
[
|
241 |
+
"An astronaut on mars in a futuristic cyborg suit.",
|
242 |
+
"deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
243 |
+
25,
|
244 |
+
7.5,
|
245 |
+
25,
|
246 |
+
7.5,
|
247 |
+
1024,
|
248 |
+
1024,
|
249 |
+
42,
|
250 |
+
2,
|
251 |
+
"sd3 medium",
|
252 |
+
"sdxl",
|
253 |
+
25, #prior_num_inference_steps_a
|
254 |
+
4.0, #prior_guidance_scale_a
|
255 |
+
12, #decoder_num_inference_steps_a
|
256 |
+
0.0, #decoder_guidance_scale_a
|
257 |
+
25, #prior_num_inference_steps_b
|
258 |
+
4.0, #prior_guidance_scale_b
|
259 |
+
12, #decoder_num_inference_steps_b
|
260 |
+
0.0 #decoder_guidance_scale_b
|
261 |
+
],
|
262 |
+
]
|
263 |
+
examples_individual = [
|
264 |
+
[
|
265 |
+
"A woman in a red dress singing on top of a building.",
|
266 |
+
"deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
267 |
+
25,
|
268 |
+
7.5,
|
269 |
+
1024,
|
270 |
+
1024,
|
271 |
+
42,
|
272 |
+
2,
|
273 |
+
"sdxl",
|
274 |
+
25, #prior_num_inference_steps
|
275 |
+
4.0, #prior_guidance_scale
|
276 |
+
12, #decoder_num_inference_steps
|
277 |
+
0.0 #decoder_guidance_scale
|
278 |
+
],
|
279 |
+
[
|
280 |
+
"An astronaut on mars in a futuristic cyborg suit.",
|
281 |
+
"deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
282 |
+
25,
|
283 |
+
7.5,
|
284 |
+
1024,
|
285 |
+
1024,
|
286 |
+
42,
|
287 |
+
2,
|
288 |
+
"sdxl",
|
289 |
+
25, #prior_num_inference_steps
|
290 |
+
4.0, #prior_guidance_scale
|
291 |
+
12, #decoder_num_inference_steps
|
292 |
+
0.0 #decoder_guidance_scale
|
293 |
+
],
|
294 |
]
|
295 |
|
296 |
css = """
|
|
|
322 |
info="Describe the image you want",
|
323 |
placeholder="A cat...",
|
324 |
)
|
325 |
+
model_choice_a = gr.Dropdown(
|
326 |
+
label="Stable Diffusion Model A",
|
327 |
+
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash", "stable cascade"],
|
328 |
value="sd3 medium",
|
329 |
)
|
330 |
+
model_choice_b = gr.Dropdown(
|
331 |
+
label="Stable Diffusion Model B",
|
332 |
+
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash", "stable cascade"],
|
333 |
value="sdxl",
|
334 |
)
|
335 |
run_button = gr.Button("Run")
|
336 |
+
result_1 = gr.Gallery(label="Generated Images (Model A)", elem_id="gallery_1")
|
337 |
+
result_2 = gr.Gallery(label="Generated Images (Model B)", elem_id="gallery_2")
|
338 |
with gr.Accordion("Advanced options", open=False):
|
339 |
+
negative_prompt = gr.Textbox(
|
340 |
+
label="Negative Prompt",
|
341 |
+
info="Describe what you don't want in the image",
|
342 |
+
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation",
|
343 |
+
placeholder="Ugly, bad anatomy...",
|
344 |
+
)
|
345 |
with gr.Row():
|
346 |
+
with gr.Column():
|
347 |
+
num_inference_steps_a = gr.Slider(
|
348 |
+
label="Inference Steps (Model A)",
|
349 |
+
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
350 |
+
minimum=1,
|
351 |
+
maximum=50,
|
352 |
+
value=25,
|
353 |
+
step=1,
|
354 |
+
visible=True
|
355 |
+
)
|
356 |
+
guidance_scale_a = gr.Slider(
|
357 |
+
label="Guidance Scale (Model A)",
|
358 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
359 |
+
minimum=0.0,
|
360 |
+
maximum=10.0,
|
361 |
+
value=7.5,
|
362 |
+
step=0.1,
|
363 |
+
visible=True
|
364 |
+
)
|
365 |
+
prior_num_inference_steps_a = gr.Slider(
|
366 |
+
label="Prior Inference Steps (Model A)",
|
367 |
+
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
368 |
+
minimum=1,
|
369 |
+
maximum=50,
|
370 |
+
value=25,
|
371 |
+
step=1,
|
372 |
+
visible=False
|
373 |
+
)
|
374 |
+
prior_guidance_scale_a = gr.Slider(
|
375 |
+
label="Prior Guidance Scale (Model A)",
|
376 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
377 |
+
minimum=0.0,
|
378 |
+
maximum=10.0,
|
379 |
+
value=4.0,
|
380 |
+
step=0.1,
|
381 |
+
visible=False
|
382 |
+
)
|
383 |
+
decoder_num_inference_steps_a = gr.Slider(
|
384 |
+
label="Decoder Inference Steps (Model A)",
|
385 |
+
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
386 |
+
minimum=1,
|
387 |
+
maximum=15,
|
388 |
+
value=15,
|
389 |
+
step=1,
|
390 |
+
visible=False
|
391 |
+
)
|
392 |
+
decoder_guidance_scale_a = gr.Slider(
|
393 |
+
label="Decoder Guidance Scale (Model A)",
|
394 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
395 |
+
minimum=0.0,
|
396 |
+
maximum=10.0,
|
397 |
+
value=0.0,
|
398 |
+
step=0.1,
|
399 |
+
visible=False
|
400 |
+
)
|
401 |
+
with gr.Column():
|
402 |
+
num_inference_steps_b = gr.Slider(
|
403 |
+
label="Inference Steps (Model B)",
|
404 |
+
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
405 |
+
minimum=1,
|
406 |
+
maximum=50,
|
407 |
+
value=25,
|
408 |
+
step=1,
|
409 |
+
visible=True
|
410 |
+
)
|
411 |
+
guidance_scale_b = gr.Slider(
|
412 |
+
label="Guidance Scale (Model B)",
|
413 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
414 |
+
minimum=0.0,
|
415 |
+
maximum=10.0,
|
416 |
+
value=7.5,
|
417 |
+
step=0.1,
|
418 |
+
visible=True
|
419 |
+
)
|
420 |
+
prior_num_inference_steps_b = gr.Slider(
|
421 |
+
label="Prior Inference Steps (Model B)",
|
422 |
+
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
423 |
+
minimum=1,
|
424 |
+
maximum=50,
|
425 |
+
value=25,
|
426 |
+
step=1,
|
427 |
+
visible=False
|
428 |
+
)
|
429 |
+
prior_guidance_scale_b = gr.Slider(
|
430 |
+
label="Prior Guidance Scale (Model B)",
|
431 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
432 |
+
minimum=0.0,
|
433 |
+
maximum=10.0,
|
434 |
+
value=4.0,
|
435 |
+
step=0.1,
|
436 |
+
visible=False
|
437 |
+
)
|
438 |
+
decoder_num_inference_steps_b = gr.Slider(
|
439 |
+
label="Decoder Inference Steps (Model B)",
|
440 |
+
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
441 |
+
minimum=1,
|
442 |
+
maximum=15,
|
443 |
+
value=12,
|
444 |
+
step=1,
|
445 |
+
visible=False
|
446 |
+
)
|
447 |
+
decoder_guidance_scale_b = gr.Slider(
|
448 |
+
label="Decoder Guidance Scale (Model B)",
|
449 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
450 |
+
minimum=0.0,
|
451 |
+
maximum=10.0,
|
452 |
+
value=0.0,
|
453 |
+
step=0.1,
|
454 |
+
visible=False
|
455 |
+
)
|
456 |
with gr.Row():
|
457 |
width = gr.Slider(
|
458 |
label="Width",
|
|
|
488 |
value=2,
|
489 |
)
|
490 |
|
491 |
+
def toggle_visibility_arena_a(model_choice_a):
|
492 |
+
if model_choice_a == "stable cascade":
|
493 |
+
return {
|
494 |
+
num_inference_steps_a: gr.update(visible=False),
|
495 |
+
guidance_scale_a: gr.update(visible=False),
|
496 |
+
prior_num_inference_steps_a: gr.update(visible=True),
|
497 |
+
prior_guidance_scale_a: gr.update(visible=True),
|
498 |
+
decoder_num_inference_steps_a: gr.update(visible=True),
|
499 |
+
decoder_guidance_scale_a: gr.update(visible=True),
|
500 |
+
}
|
501 |
+
elif model_choice_a == "sdxl flash":
|
502 |
+
return {
|
503 |
+
num_inference_steps_a: gr.update(visible=True, maximum=15, value=8),
|
504 |
+
guidance_scale_a: gr.update(visible=True, maximum=6.0, value=3.5),
|
505 |
+
prior_num_inference_steps_a: gr.update(visible=False),
|
506 |
+
prior_guidance_scale_a: gr.update(visible=False),
|
507 |
+
decoder_num_inference_steps_a: gr.update(visible=False),
|
508 |
+
decoder_guidance_scale_a: gr.update(visible=False),
|
509 |
+
}
|
510 |
+
else:
|
511 |
+
return {
|
512 |
+
num_inference_steps_a: gr.update(visible=True, maximum=50, value=25),
|
513 |
+
guidance_scale_a: gr.update(visible=True, maximum=10.0, value=7.5),
|
514 |
+
prior_num_inference_steps_a: gr.update(visible=False),
|
515 |
+
prior_guidance_scale_a: gr.update(visible=False),
|
516 |
+
decoder_num_inference_steps_a: gr.update(visible=False),
|
517 |
+
decoder_guidance_scale_a: gr.update(visible=False),
|
518 |
+
}
|
519 |
+
|
520 |
+
def toggle_visibility_arena_b(model_choice_b):
|
521 |
+
if model_choice_b == "stable cascade":
|
522 |
+
return {
|
523 |
+
num_inference_steps_b: gr.update(visible=False),
|
524 |
+
guidance_scale_b: gr.update(visible=False),
|
525 |
+
prior_num_inference_steps_b: gr.update(visible=True),
|
526 |
+
prior_guidance_scale_b: gr.update(visible=True),
|
527 |
+
decoder_num_inference_steps_b: gr.update(visible=True),
|
528 |
+
decoder_guidance_scale_b: gr.update(visible=True),
|
529 |
+
}
|
530 |
+
elif model_choice_b == "sdxl flash":
|
531 |
+
return {
|
532 |
+
num_inference_steps_b: gr.update(visible=True, maximum=15, value=8),
|
533 |
+
guidance_scale_b: gr.update(visible=True, maximum=6.0, value=3.5),
|
534 |
+
prior_num_inference_steps_b: gr.update(visible=False),
|
535 |
+
prior_guidance_scale_b: gr.update(visible=False),
|
536 |
+
decoder_num_inference_steps_b: gr.update(visible=False),
|
537 |
+
decoder_guidance_scale_b: gr.update(visible=False),
|
538 |
+
}
|
539 |
+
else:
|
540 |
+
return {
|
541 |
+
num_inference_steps_b: gr.update(visible=True, maximum=50, value=25),
|
542 |
+
guidance_scale_b: gr.update(visible=True, maximum=10.0, value=7.5),
|
543 |
+
prior_num_inference_steps_b: gr.update(visible=False),
|
544 |
+
prior_guidance_scale_b: gr.update(visible=False),
|
545 |
+
decoder_num_inference_steps_b: gr.update(visible=False),
|
546 |
+
decoder_guidance_scale_b: gr.update(visible=False),
|
547 |
+
}
|
548 |
+
|
549 |
+
model_choice_a.change(
|
550 |
+
toggle_visibility_arena_a,
|
551 |
+
inputs=[model_choice_a],
|
552 |
+
outputs=[
|
553 |
+
num_inference_steps_a,
|
554 |
+
guidance_scale_a,
|
555 |
+
prior_num_inference_steps_a,
|
556 |
+
prior_guidance_scale_a,
|
557 |
+
decoder_num_inference_steps_a,
|
558 |
+
decoder_guidance_scale_a
|
559 |
+
]
|
560 |
+
)
|
561 |
+
model_choice_b.change(
|
562 |
+
toggle_visibility_arena_b,
|
563 |
+
inputs=[model_choice_b],
|
564 |
+
outputs=[
|
565 |
+
num_inference_steps_b,
|
566 |
+
guidance_scale_b,
|
567 |
+
prior_num_inference_steps_b,
|
568 |
+
prior_guidance_scale_b,
|
569 |
+
decoder_num_inference_steps_b,
|
570 |
+
decoder_guidance_scale_b
|
571 |
+
]
|
572 |
+
)
|
573 |
+
|
574 |
+
|
575 |
gr.Examples(
|
576 |
+
examples=examples_arena,
|
577 |
+
inputs=[
|
578 |
+
prompt,
|
579 |
+
negative_prompt,
|
580 |
+
num_inference_steps_a,
|
581 |
+
guidance_scale_a,
|
582 |
+
num_inference_steps_b,
|
583 |
+
guidance_scale_b,
|
584 |
+
height,
|
585 |
+
width,
|
586 |
+
seed,
|
587 |
+
num_images_per_prompt,
|
588 |
+
model_choice_a,
|
589 |
+
model_choice_b,
|
590 |
+
prior_num_inference_steps_a,
|
591 |
+
prior_guidance_scale_a,
|
592 |
+
decoder_num_inference_steps_a,
|
593 |
+
decoder_guidance_scale_a,
|
594 |
+
prior_num_inference_steps_b,
|
595 |
+
prior_guidance_scale_b,
|
596 |
+
decoder_num_inference_steps_b,
|
597 |
+
decoder_guidance_scale_b,
|
598 |
+
],
|
599 |
outputs=[result_1, result_2],
|
600 |
fn=generate_arena_images,
|
601 |
)
|
|
|
609 |
inputs=[
|
610 |
prompt,
|
611 |
negative_prompt,
|
612 |
+
num_inference_steps_a,
|
613 |
+
guidance_scale_a,
|
614 |
+
num_inference_steps_b,
|
615 |
+
guidance_scale_b,
|
616 |
height,
|
617 |
+
width,
|
618 |
seed,
|
619 |
num_images_per_prompt,
|
620 |
+
model_choice_a,
|
621 |
+
model_choice_b,
|
622 |
+
prior_num_inference_steps_a,
|
623 |
+
prior_guidance_scale_a,
|
624 |
+
decoder_num_inference_steps_a,
|
625 |
+
decoder_guidance_scale_a,
|
626 |
+
prior_num_inference_steps_b,
|
627 |
+
prior_guidance_scale_b,
|
628 |
+
decoder_num_inference_steps_b,
|
629 |
+
decoder_guidance_scale_b,
|
630 |
],
|
631 |
outputs=[result_1, result_2],
|
632 |
)
|
|
|
641 |
)
|
642 |
model_choice = gr.Dropdown(
|
643 |
label="Stable Diffusion Model",
|
644 |
+
choices=["sd3 medium", "sd2.1", "sdxl", "sdxl flash", "stable cascade"],
|
645 |
value="sd3 medium",
|
646 |
)
|
647 |
run_button = gr.Button("Run")
|
|
|
662 |
maximum=50,
|
663 |
value=25,
|
664 |
step=1,
|
665 |
+
visible=True
|
666 |
)
|
667 |
guidance_scale = gr.Slider(
|
668 |
label="Guidance Scale",
|
|
|
671 |
maximum=10.0,
|
672 |
value=7.5,
|
673 |
step=0.1,
|
674 |
+
visible=True
|
675 |
+
)
|
676 |
+
prior_num_inference_steps = gr.Slider(
|
677 |
+
label="Prior Inference Steps",
|
678 |
+
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
679 |
+
minimum=1,
|
680 |
+
maximum=50,
|
681 |
+
value=25,
|
682 |
+
step=1,
|
683 |
+
visible=False
|
684 |
+
)
|
685 |
+
prior_guidance_scale = gr.Slider(
|
686 |
+
label="Prior Guidance Scale",
|
687 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
688 |
+
minimum=0.0,
|
689 |
+
maximum=10.0,
|
690 |
+
value=4.0,
|
691 |
+
step=0.1,
|
692 |
+
visible=False
|
693 |
+
)
|
694 |
+
decoder_num_inference_steps = gr.Slider(
|
695 |
+
label="Decoder Inference Steps",
|
696 |
+
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference",
|
697 |
+
minimum=1,
|
698 |
+
maximum=15,
|
699 |
+
value=12,
|
700 |
+
step=1,
|
701 |
+
visible=False
|
702 |
+
)
|
703 |
+
decoder_guidance_scale = gr.Slider(
|
704 |
+
label="Decoder Guidance Scale",
|
705 |
+
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.",
|
706 |
+
minimum=0.0,
|
707 |
+
maximum=10.0,
|
708 |
+
value=0.0,
|
709 |
+
step=0.1,
|
710 |
+
visible=False
|
711 |
)
|
712 |
with gr.Row():
|
713 |
width = gr.Slider(
|
|
|
744 |
value=2,
|
745 |
)
|
746 |
|
747 |
+
def toggle_visibility_individual(model_choice):
|
748 |
+
if model_choice == "stable cascade":
|
749 |
+
return {
|
750 |
+
num_inference_steps: gr.update(visible=False),
|
751 |
+
guidance_scale: gr.update(visible=False),
|
752 |
+
prior_num_inference_steps: gr.update(visible=True),
|
753 |
+
prior_guidance_scale: gr.update(visible=True),
|
754 |
+
decoder_num_inference_steps: gr.update(visible=True),
|
755 |
+
decoder_guidance_scale: gr.update(visible=True),
|
756 |
+
}
|
757 |
+
elif model_choice == "sdxl flash":
|
758 |
+
return {
|
759 |
+
num_inference_steps: gr.update(visible=True, maximum=15, value=8),
|
760 |
+
guidance_scale: gr.update(visible=True, maximum=6.0, value=3.5),
|
761 |
+
prior_num_inference_steps: gr.update(visible=False),
|
762 |
+
prior_guidance_scale: gr.update(visible=False),
|
763 |
+
decoder_num_inference_steps: gr.update(visible=False),
|
764 |
+
decoder_guidance_scale: gr.update(visible=False),
|
765 |
+
}
|
766 |
+
else:
|
767 |
+
return {
|
768 |
+
num_inference_steps: gr.update(visible=True, maximum=50, value=25),
|
769 |
+
guidance_scale: gr.update(visible=True, maximum=10.0, value=7.5),
|
770 |
+
prior_num_inference_steps: gr.update(visible=False),
|
771 |
+
prior_guidance_scale: gr.update(visible=False),
|
772 |
+
decoder_num_inference_steps: gr.update(visible=False),
|
773 |
+
decoder_guidance_scale: gr.update(visible=False),
|
774 |
+
}
|
775 |
+
|
776 |
+
model_choice.change(
|
777 |
+
toggle_visibility_individual,
|
778 |
+
inputs=[model_choice],
|
779 |
+
outputs=[
|
780 |
+
num_inference_steps,
|
781 |
+
guidance_scale,
|
782 |
+
prior_num_inference_steps,
|
783 |
+
prior_guidance_scale,
|
784 |
+
decoder_num_inference_steps,
|
785 |
+
decoder_guidance_scale
|
786 |
+
]
|
787 |
+
)
|
788 |
+
|
789 |
gr.Examples(
|
790 |
+
examples=examples_individual,
|
791 |
+
inputs=[
|
792 |
+
prompt,
|
793 |
+
negative_prompt,
|
794 |
+
num_inference_steps,
|
795 |
+
guidance_scale,
|
796 |
+
height,
|
797 |
+
width,
|
798 |
+
seed,
|
799 |
+
num_images_per_prompt,
|
800 |
+
model_choice,
|
801 |
+
prior_num_inference_steps,
|
802 |
+
prior_guidance_scale,
|
803 |
+
decoder_num_inference_steps,
|
804 |
+
decoder_guidance_scale,
|
805 |
+
],
|
806 |
outputs=[result],
|
807 |
fn=generate_individual_image,
|
808 |
)
|
|
|
817 |
prompt,
|
818 |
negative_prompt,
|
819 |
num_inference_steps,
|
|
|
|
|
820 |
guidance_scale,
|
821 |
+
height,
|
822 |
+
width,
|
823 |
seed,
|
824 |
num_images_per_prompt,
|
825 |
model_choice,
|
826 |
+
prior_num_inference_steps,
|
827 |
+
prior_guidance_scale,
|
828 |
+
decoder_num_inference_steps,
|
829 |
+
decoder_guidance_scale,
|
830 |
],
|
831 |
outputs=[result],
|
832 |
)
|