Spaces:
Running
on
Zero
Running
on
Zero
import spaces | |
import torch | |
from diffusers import StableDiffusion3Pipeline, StableDiffusionPipeline, StableDiffusionXLPipeline, DPMSolverSinglestepScheduler, StableCascadePriorPipeline, StableCascadeDecoderPipeline | |
import gradio as gr | |
import os | |
import random | |
import numpy | |
from PIL import Image | |
import gc # free up memory | |
HF_TOKEN = os.getenv("HF_TOKEN") # login with hf read token to access sd gated models | |
if torch.cuda.is_available(): | |
device = "cuda" | |
print("Using GPU") | |
else: | |
device = "cpu" | |
print("Using CPU") | |
MAX_SEED = numpy.iinfo(numpy.int32).max | |
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "0") == "1" | |
# Global dictionary to store pipelines | |
PIPELINES = {} | |
def load_pipeline(model_choice): | |
"""Loads the specified pipeline and stores it in the PIPELINES dictionary.""" | |
if model_choice not in PIPELINES: | |
if model_choice == "sd3 medium": | |
PIPELINES[model_choice] = StableDiffusion3Pipeline.from_pretrained( | |
"stabilityai/stable-diffusion-3-medium-diffusers", torch_dtype=torch.float16 | |
) | |
elif model_choice == "sd2.1": | |
PIPELINES[model_choice] = StableDiffusionPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-2-1", torch_dtype=torch.float16 | |
) | |
elif model_choice == "sdxl": | |
PIPELINES[model_choice] = StableDiffusionXLPipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", torch_dtype=torch.float16 | |
) | |
elif model_choice == "sdxl flash": | |
PIPELINES[model_choice] = StableDiffusionXLPipeline.from_pretrained( | |
"sd-community/sdxl-flash", torch_dtype=torch.float16 | |
) | |
# Store the original scheduler for resetting | |
PIPELINES[model_choice].original_scheduler = PIPELINES[model_choice].scheduler | |
elif model_choice == "stable cascade": | |
# Store both prior and decoder pipelines under 'stable cascade' | |
PIPELINES[model_choice] = { | |
'prior': StableCascadePriorPipeline.from_pretrained( | |
"stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16 | |
), | |
'decoder': StableCascadeDecoderPipeline.from_pretrained( | |
"stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16 | |
) | |
} | |
elif model_choice == "sd1.5": | |
PIPELINES[model_choice] = StableDiffusionPipeline.from_pretrained( | |
"runwayml/stable-diffusion-v1-5", torch_dtype=torch.float16 | |
) | |
else: | |
raise ValueError(f"Invalid model choice: {model_choice}") | |
return PIPELINES[model_choice] | |
def unload_pipeline(model_choice): | |
"""Unloads the specified pipeline from the PIPELINES dictionary and frees GPU memory.""" | |
if model_choice in PIPELINES: | |
del PIPELINES[model_choice] | |
torch.cuda.empty_cache() | |
gc.collect() | |
def run_inference( | |
prompt, | |
pipe, | |
negative_prompt, | |
num_inference_steps, | |
guidance_scale, | |
height, | |
width, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps=None, | |
prior_guidance_scale=None, | |
decoder_num_inference_steps=None, | |
decoder_guidance_scale=None, | |
): | |
"""Runs inference with the specified pipeline and parameters.""" | |
# Enable CPU offloading only if a GPU is available, for saving up RAM | |
if torch.cuda.is_available(): | |
if isinstance(pipe, dict): # Special handling for stable cascade | |
pipe['prior'].enable_model_cpu_offload() | |
pipe['decoder'].enable_model_cpu_offload() | |
else: | |
pipe.enable_model_cpu_offload() | |
# Reset the sampler if the model is NOT SDXL Flash | |
if model_choice != "sdxl flash" and "sdxl flash" in PIPELINES: | |
PIPELINES["sdxl flash"].scheduler = PIPELINES["sdxl flash"].original_scheduler | |
# Apply SDXL Flash sampler ONLY if model_choice is 'sdxl flash' | |
if model_choice == "sdxl flash": | |
pipe.scheduler = DPMSolverSinglestepScheduler.from_config( | |
pipe.scheduler.config, timestep_spacing="trailing" | |
) | |
if seed == 0: | |
seed = random.randint(1, MAX_SEED) | |
generator = torch.Generator().manual_seed(seed) | |
if isinstance(pipe, dict): # Stable Cascade | |
with torch.inference_mode(): | |
prior_output = pipe['prior']( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=prior_num_inference_steps, | |
guidance_scale=prior_guidance_scale, | |
height=height, | |
width=width, | |
generator=generator, | |
num_images_per_prompt=num_images_per_prompt, | |
) | |
with torch.inference_mode(): | |
output = pipe['decoder']( | |
image_embeddings=prior_output.image_embeddings.to(torch.float16), | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=decoder_num_inference_steps, | |
guidance_scale=decoder_guidance_scale, | |
).images | |
else: # Other pipelines | |
with torch.inference_mode(): | |
output = pipe( | |
prompt=prompt, | |
negative_prompt=negative_prompt, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
height=height, | |
width=width, | |
generator=generator, | |
num_images_per_prompt=num_images_per_prompt, | |
).images | |
return output | |
# Helper function to generate images for a single model | |
def generate_single_image( | |
prompt, | |
model_choice, | |
negative_prompt, | |
num_inference_steps, | |
guidance_scale, | |
height, | |
width, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps=None, | |
prior_guidance_scale=None, | |
decoder_num_inference_steps=None, | |
decoder_guidance_scale=None, | |
): | |
# Load the pipeline | |
pipe = load_pipeline(model_choice) | |
# Run inference | |
output = run_inference( | |
prompt, | |
pipe, | |
negative_prompt, | |
num_inference_steps, | |
guidance_scale, | |
height, | |
width, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps, | |
prior_guidance_scale, | |
decoder_num_inference_steps, | |
decoder_guidance_scale, | |
) | |
# Unload the pipeline | |
unload_pipeline(model_choice) | |
return output | |
# Define the image generation function for the Arena tab | |
def generate_arena_images( | |
prompt, | |
negative_prompt, | |
num_models_to_compare, | |
num_inference_steps_a, | |
guidance_scale_a, | |
num_inference_steps_b, | |
guidance_scale_b, | |
num_inference_steps_c, | |
guidance_scale_c, | |
num_inference_steps_d, | |
guidance_scale_d, | |
height_a, | |
width_a, | |
height_b, | |
width_b, | |
height_c, | |
width_c, | |
height_d, | |
width_d, | |
seed, | |
num_images_per_prompt, | |
model_choice_a, | |
model_choice_b, | |
model_choice_c, | |
model_choice_d, | |
prior_num_inference_steps_a, | |
prior_guidance_scale_a, | |
decoder_num_inference_steps_a, | |
decoder_guidance_scale_a, | |
prior_num_inference_steps_b, | |
prior_guidance_scale_b, | |
decoder_num_inference_steps_b, | |
decoder_guidance_scale_b, | |
prior_num_inference_steps_c, | |
prior_guidance_scale_c, | |
decoder_num_inference_steps_c, | |
decoder_guidance_scale_c, | |
prior_num_inference_steps_d, | |
prior_guidance_scale_d, | |
decoder_num_inference_steps_d, | |
decoder_guidance_scale_d, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
# Generate images for selected models | |
if num_models_to_compare >= 2: | |
images_a = generate_single_image( | |
prompt, | |
model_choice_a, | |
negative_prompt, | |
num_inference_steps_a, | |
guidance_scale_a, | |
height_a, | |
width_a, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps_a, | |
prior_guidance_scale_a, | |
decoder_num_inference_steps_a, | |
decoder_guidance_scale_a, | |
) | |
images_b = generate_single_image( | |
prompt, | |
model_choice_b, | |
negative_prompt, | |
num_inference_steps_b, | |
guidance_scale_b, | |
height_b, | |
width_b, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps_b, | |
prior_guidance_scale_b, | |
decoder_num_inference_steps_b, | |
decoder_guidance_scale_b, | |
) | |
output_arena_images = images_a, images_b, None, None | |
if num_models_to_compare >= 3: | |
images_c = generate_single_image( | |
prompt, | |
model_choice_c, | |
negative_prompt, | |
num_inference_steps_c, | |
guidance_scale_c, | |
height_c, | |
width_c, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps_c, | |
prior_guidance_scale_c, | |
decoder_num_inference_steps_c, | |
decoder_guidance_scale_c, | |
) | |
output_arena_images = images_a, images_b, images_c, None | |
if num_models_to_compare >= 4: | |
images_d = generate_single_image( | |
prompt, | |
model_choice_d, | |
negative_prompt, | |
num_inference_steps_d, | |
guidance_scale_d, | |
height_d, | |
width_d, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps_d, | |
prior_guidance_scale_d, | |
decoder_num_inference_steps_d, | |
decoder_guidance_scale_d, | |
) | |
output_arena_images = images_a, images_b, images_c, images_d | |
return output_arena_images | |
# Define the image generation function for the Individual tab | |
def generate_individual_image( | |
prompt, | |
model_choice, | |
negative_prompt, | |
num_inference_steps, | |
guidance_scale, | |
height, | |
width, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps, | |
prior_guidance_scale, | |
decoder_num_inference_steps, | |
decoder_guidance_scale, | |
progress=gr.Progress(track_tqdm=True), | |
): | |
output = generate_single_image( | |
prompt, | |
model_choice, | |
negative_prompt, | |
num_inference_steps, | |
guidance_scale, | |
height, | |
width, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps, | |
prior_guidance_scale, | |
decoder_num_inference_steps, | |
decoder_guidance_scale, | |
) | |
return output | |
# Gradio interface | |
examples_arena = [ | |
[ | |
"A woman in a red dress singing on top of a building.", | |
"deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
2, # num_models_to_compare | |
25, | |
7.5, | |
25, | |
7.5, | |
25, | |
7.5, | |
25, | |
7.5, | |
1024, | |
1024, | |
1024, | |
1024, | |
1024, | |
1024, | |
1024, | |
1024, | |
42, | |
2, | |
"sd3 medium", | |
"sdxl", | |
"sdxl flash", | |
"stable cascade", | |
25, # prior_num_inference_steps_a | |
4.0, # prior_guidance_scale_a | |
12, # decoder_num_inference_steps_a | |
0.0, # decoder_guidance_scale_a | |
25, # prior_num_inference_steps_b | |
4.0, # prior_guidance_scale_b | |
12, # decoder_num_inference_steps_b | |
0.0, # decoder_guidance_scale_b | |
25, # prior_num_inference_steps_c | |
4.0, # prior_guidance_scale_c | |
12, # decoder_num_inference_steps_c | |
0.0, # decoder_guidance_scale_c | |
25, # prior_num_inference_steps_d | |
4.0, # prior_guidance_scale_d | |
12, # decoder_num_inference_steps_d | |
0.0, # decoder_guidance_scale_d | |
], | |
[ | |
"An astronaut on mars in a futuristic cyborg suit.", | |
"deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
2, # num_models_to_compare | |
25, | |
7.5, | |
25, | |
7.5, | |
25, | |
7.5, | |
25, | |
7.5, | |
1024, | |
1024, | |
1024, | |
1024, | |
1024, | |
1024, | |
1024, | |
1024, | |
42, | |
2, | |
"sd3 medium", | |
"sdxl", | |
"sd3 medium", | |
"sdxl", | |
25, # prior_num_inference_steps_a | |
4.0, # prior_guidance_scale_a | |
12, # decoder_num_inference_steps_a | |
0.0, # decoder_guidance_scale_a | |
25, # prior_num_inference_steps_b | |
4.0, # prior_guidance_scale_b | |
12, # decoder_num_inference_steps_b | |
0.0, # decoder_guidance_scale_b | |
25, # prior_num_inference_steps_c | |
4.0, # prior_guidance_scale_c | |
12, # decoder_num_inference_steps_c | |
0.0, # decoder_guidance_scale_c | |
25, # prior_num_inference_steps_d | |
4.0, # prior_guidance_scale_d | |
12, # decoder_num_inference_steps_d | |
0.0, # decoder_guidance_scale_d | |
], | |
] | |
examples_individual = [ | |
[ | |
"A woman in a red dress singing on top of a building.", | |
"sdxl", | |
"deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
25, | |
7.5, | |
1024, | |
1024, | |
42, | |
2, | |
25, # prior_num_inference_steps | |
4.0, # prior_guidance_scale | |
12, # decoder_num_inference_steps | |
0.0, # decoder_guidance_scale | |
], | |
[ | |
"An astronaut on mars in a futuristic cyborg suit.", | |
"sdxl", | |
"deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
25, | |
7.5, | |
1024, | |
1024, | |
42, | |
2, | |
25, # prior_num_inference_steps | |
4.0, # prior_guidance_scale | |
12, # decoder_num_inference_steps | |
0.0, # decoder_guidance_scale | |
], | |
] | |
theme = gr.themes.Soft( | |
primary_hue="emerald", | |
secondary_hue="blue", | |
).set( | |
border_color_primary='*neutral_300', | |
block_border_width='1px', | |
block_border_width_dark='1px', | |
block_title_border_color='*secondary_100', | |
block_title_border_color_dark='*secondary_200', | |
input_background_fill_focus='*secondary_300', | |
input_border_color='*border_color_primary', | |
input_border_color_focus='*secondary_500', | |
input_border_width='1px', | |
input_border_width_dark='1px', | |
slider_color='*secondary_500', | |
slider_color_dark='*secondary_600' | |
) | |
css = """ | |
.gradio-container{max-width: 1400px !important} | |
h1{text-align:center} | |
.extra-option { | |
display: none; | |
} | |
.extra-option.visible { | |
display: block; | |
} | |
""" | |
with gr.Blocks(theme=theme, css=css) as demo: | |
with gr.Row(): | |
with gr.Column(): | |
gr.HTML( | |
""" | |
<h1 style='text-align: center'> | |
Stable Diffusion Arena | |
</h1> | |
""" | |
) | |
gr.HTML( | |
""" | |
Made by <a href='https://linktr.ee/Nick088' target='_blank'>Nick088</a> | |
<br> <a href="https://discord.gg/AQsmBmgEPy"> <img src="https://img.shields.io/discord/1198701940511617164?color=%23738ADB&label=Discord&style=for-the-badge" alt="Discord"> </a> | |
""" | |
) | |
with gr.Tabs(): | |
with gr.TabItem("Arena"): | |
with gr.Group(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Describe the image you want", | |
placeholder="A cat...", | |
) | |
num_models_to_compare = gr.Dropdown( | |
label="How many models to compare", | |
choices=[2, 3, 4], | |
value=2, | |
) | |
model_choice_a = gr.Dropdown( | |
label="Stable Diffusion Model A", | |
choices=[ | |
"sd3 medium", | |
"sd2.1", | |
"sdxl", | |
"sdxl flash", | |
"stable cascade", | |
"sd1.5", | |
], | |
value="sd3 medium", | |
) | |
model_choice_b = gr.Dropdown( | |
label="Stable Diffusion Model B", | |
choices=[ | |
"sd3 medium", | |
"sd2.1", | |
"sdxl", | |
"sdxl flash", | |
"stable cascade", | |
"sd1.5", | |
], | |
value="sdxl", | |
) | |
model_choice_c = gr.Dropdown( | |
label="Stable Diffusion Model C", | |
choices=[ | |
"sd3 medium", | |
"sd2.1", | |
"sdxl", | |
"sdxl flash", | |
"stable cascade", | |
"sd1.5", | |
], | |
value=None, | |
visible=False, | |
) | |
model_choice_d = gr.Dropdown( | |
label="Stable Diffusion Model D", | |
choices=[ | |
"sd3 medium", | |
"sd2.1", | |
"sdxl", | |
"sdxl flash", | |
"stable cascade", | |
"sd1.5", | |
], | |
value=None, | |
visible=False, | |
) | |
run_button = gr.Button("Run") | |
result_1 = gr.Gallery( | |
label="Generated Images (Model A)", elem_id="gallery_1" | |
) | |
result_2 = gr.Gallery( | |
label="Generated Images (Model B)", elem_id="gallery_2" | |
) | |
result_3 = gr.Gallery( | |
label="Generated Images (Model C)", | |
elem_id="gallery_3", | |
visible=False, | |
) | |
result_4 = gr.Gallery( | |
label="Generated Images (Model D)", | |
elem_id="gallery_4", | |
visible=False, | |
) | |
with gr.Accordion("Advanced options", open=False): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
info="Describe what you don't want in the image", | |
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
placeholder="Ugly, bad anatomy...", | |
) | |
with gr.Row(): | |
with gr.Column(): | |
num_inference_steps_a = gr.Slider( | |
label="Inference Steps (Model A)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
visible=True, | |
) | |
guidance_scale_a = gr.Slider( | |
label="Guidance Scale (Model A)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=7.5, | |
step=0.1, | |
visible=True, | |
) | |
prior_num_inference_steps_a = gr.Slider( | |
label="Prior Inference Steps (Model A)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
visible=False, | |
) | |
prior_guidance_scale_a = gr.Slider( | |
label="Prior Guidance Scale (Model A)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=4.0, | |
step=0.1, | |
visible=False, | |
) | |
decoder_num_inference_steps_a = gr.Slider( | |
label="Decoder Inference Steps (Model A)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=15, | |
value=15, | |
step=1, | |
visible=False, | |
) | |
decoder_guidance_scale_a = gr.Slider( | |
label="Decoder Guidance Scale (Model A)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=0.0, | |
step=0.1, | |
visible=False, | |
) | |
width_a = gr.Slider( | |
label="Width (Model A)", | |
info="Width of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
height_a = gr.Slider( | |
label="Height (Model A)", | |
info="Height of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
with gr.Column(): | |
num_inference_steps_b = gr.Slider( | |
label="Inference Steps (Model B)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=32, | |
visible=True, | |
) | |
guidance_scale_b = gr.Slider( | |
label="Guidance Scale (Model B)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=7.5, | |
step=0.1, | |
visible=True, | |
) | |
prior_num_inference_steps_b = gr.Slider( | |
label="Prior Inference Steps (Model B)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
visible=False, | |
) | |
prior_guidance_scale_b = gr.Slider( | |
label="Prior Guidance Scale (Model B)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=4.0, | |
step=0.1, | |
visible=False, | |
) | |
decoder_num_inference_steps_b = gr.Slider( | |
label="Decoder Inference Steps (Model B)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=15, | |
value=12, | |
step=1, | |
visible=False, | |
) | |
decoder_guidance_scale_b = gr.Slider( | |
label="Decoder Guidance Scale (Model B)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=0.0, | |
step=0.1, | |
visible=False, | |
) | |
width_b = gr.Slider( | |
label="Width (Model B)", | |
info="Width of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
height_b = gr.Slider( | |
label="Height (Model B)", | |
info="Height of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
with gr.Column(visible=False) as model_c_options: | |
num_inference_steps_c = gr.Slider( | |
label="Inference Steps (Model C)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
visible=True, | |
) | |
guidance_scale_c = gr.Slider( | |
label="Guidance Scale (Model C)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=7.5, | |
step=0.1, | |
visible=True, | |
) | |
prior_num_inference_steps_c = gr.Slider( | |
label="Prior Inference Steps (Model C)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
visible=False, | |
) | |
prior_guidance_scale_c = gr.Slider( | |
label="Prior Guidance Scale (Model C)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=4.0, | |
step=0.1, | |
visible=False, | |
) | |
decoder_num_inference_steps_c = gr.Slider( | |
label="Decoder Inference Steps (Model C)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=15, | |
value=12, | |
step=1, | |
visible=False, | |
) | |
decoder_guidance_scale_c = gr.Slider( | |
label="Decoder Guidance Scale (Model C)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=0.0, | |
step=0.1, | |
visible=False, | |
) | |
width_c = gr.Slider( | |
label="Width (Model C)", | |
info="Width of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
height_c = gr.Slider( | |
label="Height (Model C)", | |
info="Height of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
with gr.Column(visible=False) as model_d_options: | |
num_inference_steps_d = gr.Slider( | |
label="Inference Steps (Model D)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
visible=True, | |
) | |
guidance_scale_d = gr.Slider( | |
label="Guidance Scale (Model D)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=7.5, | |
step=0.1, | |
visible=True, | |
) | |
prior_num_inference_steps_d = gr.Slider( | |
label="Prior Inference Steps (Model D)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
visible=False, | |
) | |
prior_guidance_scale_d = gr.Slider( | |
label="Prior Guidance Scale (Model D)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=4.0, | |
step=0.1, | |
visible=False, | |
) | |
decoder_num_inference_steps_d = gr.Slider( | |
label="Decoder Inference Steps (Model D)", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=15, | |
value=12, | |
step=1, | |
visible=False, | |
) | |
decoder_guidance_scale_d = gr.Slider( | |
label="Decoder Guidance Scale (Model D)", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=0.0, | |
step=0.1, | |
visible=False, | |
) | |
width_d = gr.Slider( | |
label="Width (Model D)", | |
info="Width of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
height_d = gr.Slider( | |
label="Height (Model D)", | |
info="Height of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
value=42, | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
label="Seed", | |
info="A starting point to initiate the generation process, put 0 for a random one", | |
) | |
num_images_per_prompt = gr.Slider( | |
label="Images Per Prompt", | |
info="Number of Images to generate with the settings", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=2, | |
) | |
def toggle_visibility_arena_a(model_choice_a): | |
if model_choice_a == "stable cascade": | |
return { | |
num_inference_steps_a: gr.update(visible=False), | |
guidance_scale_a: gr.update(visible=False), | |
prior_num_inference_steps_a: gr.update(visible=True), | |
prior_guidance_scale_a: gr.update(visible=True), | |
decoder_num_inference_steps_a: gr.update(visible=True), | |
decoder_guidance_scale_a: gr.update(visible=True), | |
width_a: gr.update(step=512, value=1024, maximum=1536), | |
height_a: gr.update(step=512, value=1024, maximum=1536), | |
} | |
elif model_choice_a == "sdxl flash": | |
return { | |
num_inference_steps_a: gr.update(visible=True, maximum=15, value=8), | |
guidance_scale_a: gr.update(visible=True, maximum=6.0, value=3.5), | |
prior_num_inference_steps_a: gr.update(visible=False), | |
prior_guidance_scale_a: gr.update(visible=False), | |
decoder_num_inference_steps_a: gr.update(visible=False), | |
decoder_guidance_scale_a: gr.update(visible=False), | |
width_a: gr.update(step=32, value=1024, maximum=1536), | |
height_a: gr.update(step=32, value=1024, maximum=1536), | |
} | |
elif model_choice_a == "sd1.5": | |
return { | |
num_inference_steps_a: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_a: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_guidance_scale_a: gr.update(visible=True), | |
decoder_num_inference_steps_a: gr.update(visible=True), | |
decoder_guidance_scale_a: gr.update(visible=True), | |
width_a: gr.update(step=32, value=512, maximum=768), | |
height_a: gr.update(step=32, value=512, maximum=768), | |
} | |
elif model_choice_a == "sd2.1": | |
return { | |
num_inference_steps_a: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_a: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_a: gr.update(visible=False), | |
prior_guidance_scale_a: gr.update(visible=False), | |
decoder_num_inference_steps_a: gr.update(visible=False), | |
decoder_guidance_scale_a: gr.update(visible=False), | |
width_a: gr.update(step=32, value=768, maximum=1024), | |
height_a: gr.update(step=32, value=768, maximum=1024), | |
} | |
else: | |
return { | |
num_inference_steps_a: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_a: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_a: gr.update(visible=False), | |
prior_guidance_scale_a: gr.update(visible=False), | |
decoder_num_inference_steps_a: gr.update(visible=False), | |
decoder_guidance_scale_a: gr.update(visible=False), | |
width_a: gr.update(step=32, value=1024, maximum=1536), | |
height_a: gr.update(step=32, value=1024, maximum=1536), | |
} | |
def toggle_visibility_arena_b(model_choice_b): | |
if model_choice_b == "stable cascade": | |
return { | |
num_inference_steps_b: gr.update(visible=False), | |
guidance_scale_b: gr.update(visible=False), | |
prior_num_inference_steps_b: gr.update(visible=True), | |
prior_guidance_scale_b: gr.update(visible=True), | |
decoder_num_inference_steps_b: gr.update(visible=True), | |
decoder_guidance_scale_b: gr.update(visible=True), | |
width_b: gr.update(step=256, value=1024, maximum=1536), | |
height_b: gr.update(step=256, value=1024, maximum=1536), | |
} | |
elif model_choice_b == "sdxl flash": | |
return { | |
num_inference_steps_b: gr.update(visible=True, maximum=15, value=8), | |
guidance_scale_b: gr.update(visible=True, maximum=6.0, value=3.5), | |
prior_num_inference_steps_b: gr.update(visible=False), | |
prior_guidance_scale_b: gr.update(visible=False), | |
decoder_num_inference_steps_b: gr.update(visible=False), | |
decoder_guidance_scale_b: gr.update(visible=False), | |
width_a: gr.update(step=32, value=1024, maximum=1536), | |
height_a: gr.update(step=32, value=1024, maximum=1536), | |
} | |
elif model_choice_b == "sd1.5": | |
return { | |
num_inference_steps_b: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_b: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_b: gr.update(visible=False), | |
prior_guidance_scale_b: gr.update(visible=False), | |
decoder_num_inference_steps_b: gr.update(visible=False), | |
decoder_guidance_scale_b: gr.update(visible=False), | |
width_b: gr.update(step=32, value=512, maximum=768), | |
height_b: gr.update(step=32, value=512, maximum=768), | |
} | |
elif model_choice_b == "sd2.1": | |
return { | |
num_inference_steps_b: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_b: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_b: gr.update(visible=False), | |
prior_guidance_scale_b: gr.update(visible=False), | |
decoder_num_inference_steps_b: gr.update(visible=False), | |
decoder_guidance_scale_b: gr.update(visible=False), | |
width_b: gr.update(step=32, value=768, maximum=1024), | |
height_b: gr.update(step=32, value=768, maximum=1024), | |
} | |
else: | |
return { | |
num_inference_steps_b: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_b: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_b: gr.update(visible=False), | |
prior_guidance_scale_b: gr.update(visible=False), | |
decoder_num_inference_steps_b: gr.update(visible=False), | |
decoder_guidance_scale_b: gr.update(visible=False), | |
width_b: gr.update(step=32, value=1024, maximum=1536), | |
height_b: gr.update(step=32, value=1024, maximum=1536), | |
} | |
def toggle_visibility_arena_c(model_choice_c): | |
if model_choice_c == "stable cascade": | |
return { | |
num_inference_steps_c: gr.update(visible=False), | |
guidance_scale_c: gr.update(visible=False), | |
prior_num_inference_steps_c: gr.update(visible=True), | |
prior_guidance_scale_c: gr.update(visible=True), | |
decoder_num_inference_steps_c: gr.update(visible=True), | |
decoder_guidance_scale_c: gr.update(visible=True), | |
width_c: gr.update(step=256, value=1024, maximum=1536), | |
height_c: gr.update(step=256, value=1024, maximum=1536), | |
} | |
elif model_choice_c == "sdxl flash": | |
return { | |
num_inference_steps_c: gr.update(visible=True, maximum=15, value=8), | |
guidance_scale_c: gr.update(visible=True, maximum=6.0, value=3.5), | |
prior_num_inference_steps_c: gr.update(visible=False), | |
prior_guidance_scale_c: gr.update(visible=False), | |
decoder_num_inference_steps_c: gr.update(visible=False), | |
decoder_guidance_scale_c: gr.update(visible=False), | |
width_c: gr.update(step=32, value=1024, maximum=1536), | |
height_c: gr.update(step=32, value=1024, maximum=1536), | |
} | |
elif model_choice_c == "sd1.5": | |
return { | |
num_inference_steps_c: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_c: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_c: gr.update(visible=False), | |
prior_guidance_scale_c: gr.update(visible=False), | |
decoder_num_inference_steps_c: gr.update(visible=False), | |
decoder_guidance_scale_c: gr.update(visible=False), | |
width_c: gr.update(step=32, value=512, maximum=768), | |
height_c: gr.update(step=32, value=512, maximum=768), | |
} | |
elif model_choice_c == "sd2.1": | |
return { | |
num_inference_steps_c: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_c: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_c: gr.update(visible=False), | |
prior_guidance_scale_c: gr.update(visible=False), | |
decoder_num_inference_steps_c: gr.update(visible=False), | |
decoder_guidance_scale_c: gr.update(visible=False), | |
width_c: gr.update(step=32, value=768, maximum=1024), | |
height_c: gr.update(step=32, value=768, maximum=1024), | |
} | |
else: | |
return { | |
num_inference_steps_c: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_c: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_c: gr.update(visible=False), | |
prior_guidance_scale_c: gr.update(visible=False), | |
decoder_num_inference_steps_c: gr.update(visible=False), | |
decoder_guidance_scale_c: gr.update(visible=False), | |
width_c: gr.update(step=32, value=1024, maximum=1536), | |
height_c: gr.update(step=32, value=1024, maximum=1536), | |
} | |
def toggle_visibility_arena_d(model_choice_d): | |
if model_choice_d == "stable cascade": | |
return { | |
num_inference_steps_d: gr.update(visible=False), | |
guidance_scale_d: gr.update(visible=False), | |
prior_num_inference_steps_d: gr.update(visible=True), | |
prior_guidance_scale_d: gr.update(visible=True), | |
decoder_num_inference_steps_d: gr.update(visible=True), | |
decoder_guidance_scale_d: gr.update(visible=True), | |
width_d: gr.update(step=256, value=1024, maximum=1536), | |
height_d: gr.update(step=256, value=1024, maximum=1536), | |
} | |
elif model_choice_d == "sdxl flash": | |
return { | |
num_inference_steps_d: gr.update(visible=True, maximum=15, value=8), | |
guidance_scale_d: gr.update(visible=True, maximum=6.0, value=3.5), | |
prior_num_inference_steps_d: gr.update(visible=False), | |
prior_guidance_scale_d: gr.update(visible=False), | |
decoder_num_inference_steps_d: gr.update(visible=False), | |
decoder_guidance_scale_d: gr.update(visible=False), | |
width_d: gr.update(step=32, value=1024, maximum=1536), | |
height_d: gr.update(step=32, value=1024, maximum=1536), | |
} | |
elif model_choice_d == "sd1.5": | |
return { | |
num_inference_steps_d: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_d: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_d: gr.update(visible=False), | |
prior_guidance_scale_d: gr.update(visible=False), | |
decoder_num_inference_steps_d: gr.update(visible=False), | |
decoder_guidance_scale_d: gr.update(visible=False), | |
width_d: gr.update(step=32, value=512, maximum=768), | |
height_d: gr.update(step=32, value=512, maximum=768), | |
} | |
elif model_choice_d == "sd2.1": | |
return { | |
num_inference_steps_d: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_d: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_d: gr.update(visible=False), | |
prior_guidance_scale_d: gr.update(visible=False), | |
decoder_num_inference_steps_d: gr.update(visible=False), | |
decoder_guidance_scale_d: gr.update(visible=False), | |
width_d: gr.update(step=32, value=768, maximum=1024), | |
height_d: gr.update(step=32, value=768, maximum=1024), | |
} | |
else: | |
return { | |
num_inference_steps_d: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale_d: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps_d: gr.update(visible=False), | |
prior_guidance_scale_d: gr.update(visible=False), | |
decoder_num_inference_steps_d: gr.update(visible=False), | |
decoder_guidance_scale_d: gr.update(visible=False), | |
width_d: gr.update(step=32, value=1024, maximum=1536), | |
height_d: gr.update(step=32, value=1024, maximum=1536), | |
} | |
model_choice_a.change( | |
toggle_visibility_arena_a, | |
inputs=[model_choice_a], | |
outputs=[ | |
num_inference_steps_a, | |
guidance_scale_a, | |
prior_num_inference_steps_a, | |
prior_guidance_scale_a, | |
decoder_num_inference_steps_a, | |
decoder_guidance_scale_a, | |
width_a, | |
height_a, | |
], | |
) | |
model_choice_b.change( | |
toggle_visibility_arena_b, | |
inputs=[model_choice_b], | |
outputs=[ | |
num_inference_steps_b, | |
guidance_scale_b, | |
prior_num_inference_steps_b, | |
prior_guidance_scale_b, | |
decoder_num_inference_steps_b, | |
decoder_guidance_scale_b, | |
width_b, | |
height_b, | |
], | |
) | |
model_choice_c.change( | |
toggle_visibility_arena_c, | |
inputs=[model_choice_c], | |
outputs=[ | |
num_inference_steps_c, | |
guidance_scale_c, | |
prior_num_inference_steps_c, | |
prior_guidance_scale_c, | |
decoder_num_inference_steps_c, | |
decoder_guidance_scale_c, | |
width_c, | |
height_c, | |
], | |
) | |
model_choice_d.change( | |
toggle_visibility_arena_d, | |
inputs=[model_choice_d], | |
outputs=[ | |
num_inference_steps_d, | |
guidance_scale_d, | |
prior_num_inference_steps_d, | |
prior_guidance_scale_d, | |
decoder_num_inference_steps_d, | |
decoder_guidance_scale_d, | |
width_d, | |
height_d, | |
], | |
) | |
def toggle_model_options(num_models): | |
if num_models == 2: | |
return { | |
model_choice_c: gr.update(visible=False), | |
model_d_options: gr.update(visible=False), | |
model_choice_d: gr.update(visible=False), | |
result_3: gr.update(visible=False), | |
result_4: gr.update(visible=False), | |
model_c_options: gr.update(visible=False), | |
} | |
elif num_models == 3: | |
return { | |
model_choice_c: gr.update(visible=True), | |
model_d_options: gr.update(visible=False), | |
model_choice_d: gr.update(visible=False), | |
result_3: gr.update(visible=True), | |
result_4: gr.update(visible=False), | |
model_c_options: gr.update(visible=True), | |
} | |
elif num_models == 4: | |
return { | |
model_choice_c: gr.update(visible=True), | |
model_d_options: gr.update(visible=True), | |
model_choice_d: gr.update(visible=True), | |
result_3: gr.update(visible=True), | |
result_4: gr.update(visible=True), | |
model_c_options: gr.update(visible=True), | |
} | |
num_models_to_compare.change( | |
toggle_model_options, | |
inputs=[num_models_to_compare], | |
outputs=[ | |
model_choice_c, | |
model_d_options, | |
model_choice_d, | |
result_3, | |
result_4, | |
model_c_options, | |
], | |
) | |
gr.Examples( | |
examples=examples_arena, | |
fn=generate_arena_images, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
num_models_to_compare, | |
num_inference_steps_a, | |
guidance_scale_a, | |
num_inference_steps_b, | |
guidance_scale_b, | |
num_inference_steps_c, | |
guidance_scale_c, | |
num_inference_steps_d, | |
guidance_scale_d, | |
height_a, | |
width_a, | |
height_b, | |
width_b, | |
height_c, | |
width_c, | |
height_d, | |
width_d, | |
seed, | |
num_images_per_prompt, | |
model_choice_a, | |
model_choice_b, | |
model_choice_c, | |
model_choice_d, | |
prior_num_inference_steps_a, | |
prior_guidance_scale_a, | |
decoder_num_inference_steps_a, | |
decoder_guidance_scale_a, | |
prior_num_inference_steps_b, | |
prior_guidance_scale_b, | |
decoder_num_inference_steps_b, | |
decoder_guidance_scale_b, | |
prior_num_inference_steps_c, | |
prior_guidance_scale_c, | |
decoder_num_inference_steps_c, | |
decoder_guidance_scale_c, | |
prior_num_inference_steps_d, | |
prior_guidance_scale_d, | |
decoder_num_inference_steps_d, | |
decoder_guidance_scale_d, | |
], | |
outputs=[result_1, result_2, result_3, result_4], | |
cache_examples=CACHE_EXAMPLES | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
run_button.click, | |
], | |
fn=generate_arena_images, | |
inputs=[ | |
prompt, | |
negative_prompt, | |
num_models_to_compare, | |
num_inference_steps_a, | |
guidance_scale_a, | |
num_inference_steps_b, | |
guidance_scale_b, | |
num_inference_steps_c, | |
guidance_scale_c, | |
num_inference_steps_d, | |
guidance_scale_d, | |
height_a, | |
width_a, | |
height_b, | |
width_b, | |
height_c, | |
width_c, | |
height_d, | |
width_d, | |
seed, | |
num_images_per_prompt, | |
model_choice_a, | |
model_choice_b, | |
model_choice_c, | |
model_choice_d, | |
prior_num_inference_steps_a, | |
prior_guidance_scale_a, | |
decoder_num_inference_steps_a, | |
decoder_guidance_scale_a, | |
prior_num_inference_steps_b, | |
prior_guidance_scale_b, | |
decoder_num_inference_steps_b, | |
decoder_guidance_scale_b, | |
prior_num_inference_steps_c, | |
prior_guidance_scale_c, | |
decoder_num_inference_steps_c, | |
decoder_guidance_scale_c, | |
prior_num_inference_steps_d, | |
prior_guidance_scale_d, | |
decoder_num_inference_steps_d, | |
decoder_guidance_scale_d, | |
], | |
outputs=[result_1, result_2, result_3, result_4], | |
) | |
with gr.TabItem("Individual"): | |
with gr.Group(): | |
with gr.Column(): | |
prompt = gr.Textbox( | |
label="Prompt", | |
info="Describe the image you want", | |
placeholder="A cat...", | |
) | |
model_choice = gr.Dropdown( | |
label="Stable Diffusion Model", | |
choices=[ | |
"sd3 medium", | |
"sd2.1", | |
"sdxl", | |
"sdxl flash", | |
"stable cascade", | |
"sd1.5", | |
], | |
value="sd3 medium", | |
) | |
run_button = gr.Button("Run") | |
result = gr.Gallery( | |
label="Generated AI Images", elem_id="gallery" | |
) | |
with gr.Accordion("Advanced options", open=False): | |
with gr.Row(): | |
negative_prompt = gr.Textbox( | |
label="Negative Prompt", | |
info="Describe what you don't want in the image", | |
value="deformed, distorted, disfigured, poorly drawn, bad anatomy, incorrect anatomy, extra limb, missing limb, floating limbs, mutated hands and fingers, disconnected limbs, mutation, mutated, ugly, disgusting, blurry, amputation", | |
placeholder="Ugly, bad anatomy...", | |
) | |
with gr.Row(): | |
num_inference_steps = gr.Slider( | |
label="Number of Inference Steps", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
visible=True, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=7.5, | |
step=0.1, | |
visible=True, | |
) | |
prior_num_inference_steps = gr.Slider( | |
label="Prior Inference Steps", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=50, | |
value=25, | |
step=1, | |
visible=False, | |
) | |
prior_guidance_scale = gr.Slider( | |
label="Prior Guidance Scale", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=4.0, | |
step=0.1, | |
visible=False, | |
) | |
decoder_num_inference_steps = gr.Slider( | |
label="Decoder Inference Steps", | |
info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference", | |
minimum=1, | |
maximum=15, | |
value=12, | |
step=1, | |
visible=False, | |
) | |
decoder_guidance_scale = gr.Slider( | |
label="Decoder Guidance Scale", | |
info="Controls how much the image generation process follows the text prompt. Higher values make the image stick more closely to the input text.", | |
minimum=0.0, | |
maximum=10.0, | |
value=0.0, | |
step=0.1, | |
visible=False, | |
) | |
with gr.Row(): | |
width = gr.Slider( | |
label="Width", | |
info="Width of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
height = gr.Slider( | |
label="Height", | |
info="Height of the Image", | |
minimum=512, | |
maximum=1280, | |
value=1024, | |
step=32, | |
) | |
with gr.Row(): | |
seed = gr.Slider( | |
value=42, | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
label="Seed", | |
info="A starting point to initiate the generation process, put 0 for a random one", | |
) | |
num_images_per_prompt = gr.Slider( | |
label="Images Per Prompt", | |
info="Number of Images to generate with the settings", | |
minimum=1, | |
maximum=4, | |
step=1, | |
value=2, | |
) | |
def toggle_visibility_individual(model_choice): | |
if model_choice == "stable cascade": | |
return { | |
num_inference_steps: gr.update(visible=False), | |
guidance_scale: gr.update(visible=False), | |
prior_num_inference_steps: gr.update(visible=True), | |
prior_guidance_scale: gr.update(visible=True), | |
decoder_num_inference_steps: gr.update(visible=True), | |
decoder_guidance_scale: gr.update(visible=True), | |
width: gr.update(step=256, value=1024, maximum=1536), | |
height: gr.update(step=256, value=1024, maximum=1536), | |
} | |
elif model_choice == "sdxl flash": | |
return { | |
num_inference_steps: gr.update(visible=True, maximum=15, value=8), | |
guidance_scale: gr.update(visible=True, maximum=6.0, value=3.5), | |
prior_num_inference_steps: gr.update(visible=False), | |
prior_guidance_scale: gr.update(visible=False), | |
decoder_num_inference_steps: gr.update(visible=False), | |
decoder_guidance_scale: gr.update(visible=False), | |
width: gr.update(step=32, value=1024, maximum=1536), | |
height: gr.update(step=32, value=1024, maximum=1536), | |
} | |
elif model_choice == "sd1.5": | |
return { | |
num_inference_steps: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps: gr.update(visible=False), | |
prior_guidance_scale: gr.update(visible=False), | |
decoder_num_inference_steps: gr.update(visible=False), | |
decoder_guidance_scale: gr.update(visible=False), | |
width: gr.update(step=32, value=512, maximum=768), | |
height: gr.update(step=32, value=512, maximum=768), | |
} | |
elif model_choice == "sd2.1": | |
return { | |
num_inference_steps: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps: gr.update(visible=False), | |
prior_guidance_scale: gr.update(visible=False), | |
decoder_num_inference_steps: gr.update(visible=False), | |
decoder_guidance_scale: gr.update(visible=False), | |
width: gr.update(step=32, value=768, maximum=1024), | |
height: gr.update(step=32, value=768, maximum=1024), | |
} | |
else: | |
return { | |
num_inference_steps: gr.update(visible=True, maximum=50, value=25), | |
guidance_scale: gr.update(visible=True, maximum=10.0, value=7.5), | |
prior_num_inference_steps: gr.update(visible=False), | |
prior_guidance_scale: gr.update(visible=False), | |
decoder_num_inference_steps: gr.update(visible=False), | |
decoder_guidance_scale: gr.update(visible=False), | |
width: gr.update(step=32, value=1024, maximum=1536), | |
height: gr.update(step=32, value=1024, maximum=1536), | |
} | |
model_choice.change( | |
toggle_visibility_individual, | |
inputs=[model_choice], | |
outputs=[ | |
num_inference_steps, | |
guidance_scale, | |
prior_num_inference_steps, | |
prior_guidance_scale, | |
decoder_num_inference_steps, | |
decoder_guidance_scale, | |
width, | |
height, | |
], | |
) | |
gr.Examples( | |
examples=examples_individual, | |
fn=generate_individual_image, | |
inputs=[ | |
prompt, | |
model_choice, | |
negative_prompt, | |
num_inference_steps, | |
guidance_scale, | |
height, | |
width, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps, | |
prior_guidance_scale, | |
decoder_num_inference_steps, | |
decoder_guidance_scale, | |
], | |
outputs=[result], | |
cache_examples=CACHE_EXAMPLES | |
) | |
gr.on( | |
triggers=[ | |
prompt.submit, | |
run_button.click, | |
], | |
fn=generate_individual_image, | |
inputs=[ | |
prompt, | |
model_choice, | |
negative_prompt, | |
num_inference_steps, | |
guidance_scale, | |
height, | |
width, | |
seed, | |
num_images_per_prompt, | |
prior_num_inference_steps, | |
prior_guidance_scale, | |
decoder_num_inference_steps, | |
decoder_guidance_scale, | |
], | |
outputs=[result], | |
) | |
demo.queue().launch(share=False) |