Nick088's picture
Update app.py
f6df9de verified
raw
history blame
3.09 kB
import subprocess
import os
import gradio as gr
import torch
if torch.cuda.is_available():
device = "cuda"
print("Using GPU")
else:
device = "cpu"
print("Using CPU")
subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"])
os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator")
def generate(
system_prompt,
prompt,
max_new_tokens,
repetition_penalty,
temperature,
top_p,
top_k,
seed
):
input_text = f"{system_prompt}, {prompt}"
input_ids = tokenizer(input_text, return_tensors="pt").input_ids.to(device)
if seed == 0:
seed = random.randint(1, 100000)
torch.manual_seed(seed)
else:
torch.manual_seed(seed)
outputs = model.generate(
input_ids,
max_new_tokens=max_new_tokens,
repetition_penalty=repetition_penalty,
do_sample=True,
temperature=temperature,
top_p=top_p,
top_k=top_k,
)
better_prompt = tokenizer.decode(outputs[0])
better_prompt = better_prompt.replace("<pad>", "").replace("</s>", "")
return better_prompt
prompt = gr.Textbox(label="Prompt", interactive=True)
stable_diffusion_model = gr.Dropdown(["2", "xl"], interactive=True, label="Stable Diffusion Model", value="xl", type=value, info="Choose which Stable Diffusion Model to use, xl understands prompts better")
num_inference_steps = gr.Number(value=50, minimum=1, precision=0, interactive=True, label="Inference Steps", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference")
guidance_scale = gr.Number(value=7.5, minimum=0.1, interactive=True, label="Guidance Scale", info="How closely the generated image adheres to the prompt")
num_images_per_prompt = gr.Number(value=1, minimum=1, precision=0, interactive=True, label="Images Per Prompt", info="The number of images to make with the prompt")
model_precision_type = gr.Dropdown(["fp16", "fp32"], value="fp16" interactive=True, label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results")
seed = gr.Number(value=42, interactive=True, label="Seed", info="A starting point to initiate the generation process, put 0 for a random one")
examples = [
[
"A man in a purple suit wearing a tophat.",
"xl",
25,
7.5,
1,
"fp16",
42,
]
]
gr.Interface(
fn=generate,
inputs=[prompt, stable_diffusion_model, num_inference_steps, guidance_scale, num_images_per_prompt, model_precision_type, seed],
outputs=gr.Image(label="Generated Minecraft Skin"),
title="Stable Diffusion Finetuned Minecraft Skin Generator",
description="Make your prompts more detailed!<br>Model used: https://huggingface.co/roborovski/superprompt-v1<br>Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)",
examples=examples,
concurrency_limit=20,
).launch(show_api=False)