Spaces:
Running
on
Zero
Running
on
Zero
import subprocess | |
import os | |
import gradio as gr | |
import torch | |
if torch.cuda.is_available(): | |
device = "cuda" | |
print("Using GPU") | |
else: | |
device = "cpu" | |
print("Using CPU") | |
subprocess.run(["git", "clone", "https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator.git"]) | |
os.chdir("Stable_Diffusion_Finetuned_Minecraft_Skin_Generator") | |
def run_inference(prompt, stable_diffusion_model, num_inference_steps, guidance_scale, num_images_per_prompt, model_precision_type, seed, output_image_name, verbose): | |
if stable_diffusion_model == '2': | |
sd_model = "minecraft-skins" | |
else: | |
sd_model = "minecraft-skins-sdxl" | |
command = f"Python_Scripts/{sd_model}.py {prompt} {num_inference_steps} {guidance_scale} {num_images_per_prompt} {model_precision_type} {seed} {output_image_name} {'--verbose' if verbose else ''}" | |
subprocess.run(["python", command], check=True) | |
return os.path.join(f"output_minecraft_skins/{output_image_name}") | |
# Define Gradio UI components | |
prompt_input = gr.Textbox(label="Your Prompt", info="What the Minecraft Skin should look like") | |
stable_diffusion_model_input = gr.Dropdown(['2', 'xl'], value="xl", label="Stable Diffusion Model", info="Choose which Stable Diffusion Model to use, xl understands prompts better") | |
num_inference_steps_input = gr.Number(label="Number of Inference Steps", precision=0, value=25) | |
guidance_scale_input = gr.Number(minimum=0.1, value=7.5, label="Guidance Scale", info="The number of denoising steps of the image. More denoising steps usually lead to a higher quality image at the cost of slower inference") | |
num_images_per_prompt_input = gr.Number(minimum=1, value=1, precision=0, label="Number of Images per Prompt", info="The number of images to make with the prompt") | |
model_precision_type_input = gr.Dropdown(["fp16", "fp32"], value="fp16", label="Model Precision Type", info="The precision type to load the model, like fp16 which is faster, or fp32 which gives better results") | |
seed_input = gr.Number(value=42, label="Seed", info="A starting point to initiate generation, put 0 for a random one") | |
output_image_name_input = gr.Textbox(label="Output Image Name", info="The name of the file of the output image skin, keep the .png", value="output-skin.png") | |
verbose_input = gr.Checkbox(label="Verbose Output", info="Produce more detailed output while running", value=False) | |
# Create the Gradio interface | |
gr.Interface( | |
fn=run_inference, | |
inputs=[ | |
prompt_input, | |
stable_diffusion_model_input, | |
num_inference_steps_input, | |
guidance_scale_input, | |
num_images_per_prompt_input, | |
model_precision_type_input, | |
seed_input, | |
output_image_name_input, | |
verbose_input | |
], | |
outputs=gr.Image(label="Generated Minecraft Skin Image Asset"), | |
title="Minecraft Skin Generator", | |
description="Make AI generated Minecraft Skins by a Finetuned Stable Diffusion Version!<br>Model used: https://github.com/Nick088Official/Stable_Diffusion_Finetuned_Minecraft_Skin_Generator<br>Hugging Face Space made by [Nick088](https://linktr.ee/Nick088)", | |
).launch(show_api=False, share=True) | |