Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/python3 | |
import os | |
import torch | |
import logging | |
from audiosr import super_resolution, build_model, save_wave, get_time, read_list | |
import argparse | |
os.environ["TOKENIZERS_PARALLELISM"] = "true" | |
matplotlib_logger = logging.getLogger('matplotlib') | |
matplotlib_logger.setLevel(logging.WARNING) | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"-i", | |
"--input_audio_file", | |
type=str, | |
required=False, | |
help="Input audio file for audio super resolution", | |
) | |
parser.add_argument( | |
"-il", | |
"--input_file_list", | |
type=str, | |
required=False, | |
default="", | |
help="A file that contains all audio files that need to perform audio super resolution", | |
) | |
parser.add_argument( | |
"-s", | |
"--save_path", | |
type=str, | |
required=False, | |
help="The path to save model output", | |
default="./output", | |
) | |
parser.add_argument( | |
"--model_name", | |
type=str, | |
required=False, | |
help="The checkpoint you gonna use", | |
default="basic", | |
choices=["basic","speech"] | |
) | |
parser.add_argument( | |
"-d", | |
"--device", | |
type=str, | |
required=False, | |
help="The device for computation. If not specified, the script will automatically choose the device based on your environment.", | |
default="auto", | |
) | |
parser.add_argument( | |
"--ddim_steps", | |
type=int, | |
required=False, | |
default=50, | |
help="The sampling step for DDIM", | |
) | |
parser.add_argument( | |
"-gs", | |
"--guidance_scale", | |
type=float, | |
required=False, | |
default=3.5, | |
help="Guidance scale (Large => better quality and relavancy to text; Small => better diversity)", | |
) | |
parser.add_argument( | |
"--seed", | |
type=int, | |
required=False, | |
default=42, | |
help="Changing this value (any integer number) will lead to a different generation result.", | |
) | |
parser.add_argument( | |
"--suffix", | |
type=str, | |
required=False, | |
help="Suffix for the output file", | |
default="_AudioSR_Processed_48K", | |
) | |
args = parser.parse_args() | |
torch.set_float32_matmul_precision("high") | |
save_path = os.path.join(args.save_path, get_time()) | |
assert args.input_file_list is not None or args.input_audio_file is not None,"Please provide either a list of audio files or a single audio file" | |
input_file = args.input_audio_file | |
random_seed = args.seed | |
sample_rate=48000 | |
latent_t_per_second=12.8 | |
guidance_scale = args.guidance_scale | |
os.makedirs(save_path, exist_ok=True) | |
audiosr = build_model(model_name=args.model_name, device=args.device) | |
if(args.input_file_list): | |
print("Generate audio based on the text prompts in %s" % args.input_file_list) | |
files_todo = read_list(args.input_file_list) | |
else: | |
files_todo = [input_file] | |
for input_file in files_todo: | |
name = os.path.splitext(os.path.basename(input_file))[0] + args.suffix | |
waveform = super_resolution( | |
audiosr, | |
input_file, | |
seed=random_seed, | |
guidance_scale=guidance_scale, | |
ddim_steps=args.ddim_steps, | |
latent_t_per_second=latent_t_per_second | |
) | |
save_wave(waveform, inputpath=input_file, savepath=save_path, name=name, samplerate=sample_rate) | |