Spaces:
Sleeping
Sleeping
File size: 8,939 Bytes
d777f1b 32f2451 d777f1b 36703bb 65f3fa5 36703bb d777f1b 32f2451 d777f1b 32f2451 d777f1b 65f3fa5 d777f1b 65f3fa5 d777f1b 32f2451 0050bbf b85e8d6 0050bbf b85e8d6 d777f1b 0050bbf d777f1b 0050bbf d777f1b 0050bbf 652c199 32f2451 d777f1b 32f2451 82f2fb9 4873385 65f3fa5 d777f1b 7a8ae63 d777f1b b85e8d6 d777f1b 65f3fa5 36703bb d777f1b 4873385 d777f1b 82f2fb9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 |
import yaml
import torch
import logging
import argparse
import warnings
import pandas as pd
from tqdm.auto import tqdm
from jsonargparse import CLI
from types import SimpleNamespace
from llama_index.core.schema import TextNode
from langchain_huggingface import HuggingFaceEmbeddings
from llama_index.core import Prompt, Settings, VectorStoreIndex
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig, TextStreamer
import gradio as gr
import os
import shutil
from pathlib import Path
from docx.api import Document
from types import SimpleNamespace
from llama_index.core import SimpleDirectoryReader
from utils.process_tables import extract_and_replace_docx_tables
from langchain._api import LangChainDeprecationWarning
# Configure logging
logging.basicConfig(
level=logging.INFO,
format='%(asctime)s - %(levelname)s - %(message)s',
handlers=[
logging.FileHandler("script.log"),
logging.StreamHandler()
]
)
logger = logging.getLogger(__name__)
def load_config(file_path='config.yaml'):
logger.info('Loading config file ...')
try:
with open(file_path, 'r') as file:
cfg = yaml.safe_load(file)
for k, v in cfg.items():
if isinstance(v, dict):
cfg[k] = SimpleNamespace(**v)
logger.info('Config file loaded successfully.')
return SimpleNamespace(**cfg)
except Exception as e:
logger.error(f'Error loading config file: {e}')
raise
cfg = load_config()
def process_docx_files(data_dir=Path(cfg.dataset.data_dir),
processed_data_dir=Path(cfg.dataset.processed_data_dir),
chunk_marker=cfg.dataset.chunk_marker):
try:
if not os.path.exists(processed_data_dir):
shutil.rmtree(processed_data_dir)
docx_files = [file for file in os.listdir(data_dir) if file.endswith('.docx')]
logger.info(f'Found {len(docx_files)} DOCX files to process.')
for fname in docx_files:
document, html_chunked_tables = extract_and_replace_docx_tables(
docx_file=data_dir / fname,
chunk_marker=chunk_marker
)
document.save(processed_data_dir / f'processed_{fname}')
logger.info(f'Processed and saved {fname}')
except Exception as e:
logger.error(f'Error processing DOCX files: {e}')
raise
def load_processed_data(processed_data_dir=Path(cfg.dataset.processed_data_dir)):
try:
documents = SimpleDirectoryReader(
input_dir=processed_data_dir,
required_exts=[cfg.dataset.required_exts],
).load_data()
logger.info('Processed data loaded successfully.')
return documents
except Exception as e:
logger.error(f'Error loading processed data: {e}')
raise
def get_chunks(documents, chunk_marker=cfg.dataset.chunk_marker):
try:
chunks = [chunk.strip() for doc in documents for chunk in doc.text.split(chunk_marker) if chunk.strip()]
logger.info(f'Extracted {len(chunks)} chunks from documents.')
return chunks
except Exception as e:
logger.error(f'Error extracting chunks: {e}')
raise
def main_prepare():
logger.info('Starting document processing ...')
try:
process_docx_files()
documents = load_processed_data()
chunks = get_chunks(documents)
num_chunks = len(chunks)
logger.info(f'Total number of chunks: {num_chunks}')
df_chunks = pd.DataFrame({'chunk': chunks})
df_chunks.to_pickle('processed_chunks.pickle')
logger.info('All chunks saved to processed_chunks.pickle')
except Exception as e:
logger.error(f'Error in main processing: {e}')
raise
def load_config(config_path='config.yaml'):
print('-> Loading config file ...')
cfg = yaml.safe_load(
open(config_path).read()
)
for k,v in cfg.items():
if type(v) == dict:
cfg[k] = SimpleNamespace(**v)
cfg = SimpleNamespace(**cfg)
return cfg
def get_prompt_template():
template = (
"Bạn là trợ lý ảo hữu ích và thông minh được huấn luyên được để trả lời các câu hỏi từ người dùng giữa trên các thông tin ngữ cảnh liên quan được cung cấp\n"
"Thông tin ngữ cảnh:\n"
"---------------------\n"
"{context_str}"
"\n---------------------\n"
"Dựa trên những thông tin ngữ cảnh bên trên, hãy trả lời câu hỏi sau: {query_str}\n"
)
qa_template = Prompt(template)
return qa_template
def reset_settings(cfg):
embed_model =HuggingFaceEmbeddings(
model_name=cfg.architecture.embedding_model
)
Settings.embed_model = embed_model
Settings.llm = None
def get_retriever(cfg, prompt_template):
chunks = pd.read_pickle('processed_chunks.pickle')['chunk'].values.tolist()
nodes = [TextNode(text=chunk) for chunk in chunks]
index = VectorStoreIndex(nodes=nodes)
retriever = index.as_query_engine(
similarity_top_k=cfg.retrieve.top_k,
text_qa_template=prompt_template
)
return retriever
def load_tokenizer(cfg):
tokenizer = AutoTokenizer.from_pretrained(
cfg.architecture.llm_model,
token=os.getenv('HUGGING_KEY')
)
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
return tokenizer
def get_llm(cfg):
if cfg.architecture.llm_quantized:
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_use_double_quant=True,
bnb_4bit_quant_type="nf4",
bnb_4bit_compute_dtype=torch.float16
)
else:
bnb_config = None
llm = AutoModelForCausalLM.from_pretrained(
cfg.architecture.llm_model,
torch_dtype=torch.bfloat16,
device_map=cfg.environment.device,
token= os.getenv('HUGGING_KEY'),
low_cpu_mem_usage=True,
quantization_config=bnb_config,
)
return llm.eval()
def run(text, intensity):
# Log the start of the process
prompt = retriever.query(text).response
prompt = tokenizer.bos_token + '[INST] ' + prompt + ' [/INST]'
streamer = TextStreamer(tokenizer, skip_prompt=True)
input_ids = tokenizer([prompt], return_tensors='pt').to(cfg.environment.device)
sample_outputs = language_model.generate(
**input_ids,
streamer=streamer,
pad_token_id=tokenizer.pad_token_id,
max_new_tokens=cfg.generation.max_new_tokens,
do_sample=cfg.generation.do_sample,
temperature=cfg.generation.temperature
)
return sample_outputs
def vistral_chat():
demo = gr.Interface(fn=run,
inputs=[gr.Textbox(label="Nhập vào nội dung input",value="Con đường xưa em đi"),gr.Slider(label="Độ dài output muốn tạo ra", value=20, minimum=10, maximum=100, step=2),],
outputs=gr.Textbox(label="Output"), # <-- Number of output components: 1
)
demo.launch()
def main1(config_path):
# Configure logging
logging.basicConfig(level=logging.INFO,
format='%(asctime)s - %(name)s - %(levelname)s - %(message)s')
logger = logging.getLogger(__name__)
global config
global retriever
global tokenizer
global language_model
try:
# Log the start of the process
logger.info("Starting the process with config file: %s", config_path)
# Load configuration from the file
config = load_config(config_path)
# Load necessary components
prompt_template = get_prompt_template()
# Replace OpenAI embed model and llm with custom ones
reset_settings(config)
# Get retriever
retriever = get_retriever(config, prompt_template)
# Load tokenizer and language model
tokenizer = load_tokenizer(config)
language_model = get_llm(config)
# Start the command line interface
vistral_chat()
# Log successful completion
logger.info("Process completed successfully.")
except FileNotFoundError as e:
logger.error("Configuration file not found: %s", e)
except Exception as e:
logger.exception("An error occurred: %s", e)
if __name__ == "__main__":
warnings.simplefilter("ignore", category=LangChainDeprecationWarning)
# access_token_read = “abc”
# login(token = access_token_read)
main_prepare()
parser = argparse.ArgumentParser(description='Process some configurations.')
parser.add_argument('--config', type=str, default='config.yaml', help='Path to the configuration file')
args = parser.parse_args()
main1(args.config)
|