Ngadou's picture
Update app.py
ecdca72
import gradio as gr
import torch
from gradio.components import Textbox
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM, AutoTokenizer
from transformers import GenerationConfig
peft_model_id = "Ngadou/falcon-7b-scam-buster"
config = PeftConfig.from_pretrained(peft_model_id)
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto')
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path)
# Adapter model
model = PeftModel.from_pretrained(model, peft_model_id).to("cuda")
# def is_scam(instruction):
# max_new_tokens=128
# temperature=0.1
# top_p=0.75
# top_k=40
# num_beams=4
# instruction = instruction + ".\nIs this conversation a scam or not and why?"
# prompt = instruction + "\n### Solution:\n"
# inputs = tokenizer(prompt, return_tensors="pt")
# input_ids = inputs["input_ids"].to("cuda")
# attention_mask = inputs["attention_mask"].to("cuda")
# generation_config = GenerationConfig(
# temperature=temperature,
# top_p=top_p,
# top_k=top_k,
# num_beams=num_beams,
# )
# with torch.no_grad():
# generation_output = model.generate(
# input_ids=input_ids,
# attention_mask=attention_mask,
# generation_config=generation_config,
# return_dict_in_generate=True,
# output_scores=True,
# max_new_tokens=max_new_tokens,
# early_stopping=True
# )
# s = generation_output.sequences[0]
# output = tokenizer.decode(s)
# results = output.split("### Solution:")[1].lstrip("\n").split('\n')
# # The format of the output should be adjusted according to your model's output
# classification = results # Assumes first line is the classification
# #reason = results[1] if len(results) > 1 else "" # Assumes the rest is the reason
# return classification #, reason
def is_scam(instruction):
max_new_tokens=128
temperature=0.1
top_p=0.75
top_k=40
num_beams=4
instruction = instruction + "\n Is this conversation a scam or not and why?"
prompt = instruction + "\n### Solution:\n"
inputs = tokenizer(prompt, return_tensors="pt")
input_ids = inputs["input_ids"].to("cuda")
attention_mask = inputs["attention_mask"].to("cuda")
generation_config = GenerationConfig(
temperature=temperature,
top_p=top_p,
top_k=top_k,
num_beams=num_beams,
)
with torch.no_grad():
generation_output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
generation_config=generation_config,
return_dict_in_generate=True,
output_scores=True,
max_new_tokens=max_new_tokens,
early_stopping=True
)
s = generation_output.sequences[0]
output = tokenizer.decode(s)
classification = output.split("### Solution:")[1].lstrip("\n")
print(classification)
return str(classification), " "
gr.Interface(
fn=is_scam,
inputs='text',
outputs= ['text','text']
).launch()