|
import gradio as gr |
|
import torch |
|
from gradio.components import Textbox |
|
from peft import PeftModel, PeftConfig |
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
from transformers import GenerationConfig |
|
|
|
|
|
peft_model_id = "Ngadou/falcon-7b-scam-buster" |
|
config = PeftConfig.from_pretrained(peft_model_id) |
|
|
|
model = AutoModelForCausalLM.from_pretrained(config.base_model_name_or_path, trust_remote_code=True, return_dict=True, load_in_4bit=True, device_map='auto') |
|
tokenizer = AutoTokenizer.from_pretrained(config.base_model_name_or_path) |
|
|
|
|
|
model = PeftModel.from_pretrained(model, peft_model_id).to("cuda") |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def is_scam(instruction): |
|
max_new_tokens=128 |
|
temperature=0.1 |
|
top_p=0.75 |
|
top_k=40 |
|
num_beams=4 |
|
|
|
instruction = instruction + "\n Is this conversation a scam or not and why?" |
|
prompt = instruction + "\n### Solution:\n" |
|
inputs = tokenizer(prompt, return_tensors="pt") |
|
input_ids = inputs["input_ids"].to("cuda") |
|
attention_mask = inputs["attention_mask"].to("cuda") |
|
generation_config = GenerationConfig( |
|
temperature=temperature, |
|
top_p=top_p, |
|
top_k=top_k, |
|
num_beams=num_beams, |
|
) |
|
with torch.no_grad(): |
|
generation_output = model.generate( |
|
input_ids=input_ids, |
|
attention_mask=attention_mask, |
|
generation_config=generation_config, |
|
return_dict_in_generate=True, |
|
output_scores=True, |
|
max_new_tokens=max_new_tokens, |
|
early_stopping=True |
|
) |
|
s = generation_output.sequences[0] |
|
output = tokenizer.decode(s) |
|
|
|
classification = output.split("### Solution:")[1].lstrip("\n") |
|
print(classification) |
|
|
|
return str(classification), " " |
|
|
|
|
|
gr.Interface( |
|
fn=is_scam, |
|
inputs='text', |
|
outputs= ['text','text'] |
|
).launch() |