Spaces:
Runtime error
Runtime error
from typing import Any, Callable, List, Tuple | |
import huggingface_hub | |
from dataclasses import dataclass | |
from datetime import datetime | |
from time import sleep | |
import inspect | |
import ast | |
from random import randint | |
from urllib.parse import quote | |
from black import Mode, format_str | |
import gradio as gr | |
from huggingface_hub import InferenceClient | |
from pymongo import MongoClient | |
from constants import * | |
from config import DemoConfig | |
from tools import Tools | |
class Function: | |
name: str | |
short_description: str | |
description_function: Callable[[Any], str] | |
explanation_function: Callable[[Any], str] | |
FUNCTIONS = [ | |
Function( | |
name="get_current_location", | |
short_description="Finding your city", | |
description_function=lambda *_, **__: "Finding your city", | |
explanation_function=lambda result: f"Found you in {result}!", | |
), | |
Function( | |
name="sort_results", | |
short_description="Sorting results", | |
description_function=lambda places, sort, descending=True, first_n=None: f"Sorting results by {sort} from " | |
+ ("lowest to highest" if not descending else "highest to lowest"), | |
explanation_function=lambda result: "Done!", | |
), | |
Function( | |
name="get_latitude_longitude", | |
short_description="Convert to coordinates", | |
description_function=lambda location: f"Converting {location} into latitude and longitude coordinates", | |
explanation_function=lambda result: "Converted!", | |
), | |
Function( | |
name="get_distance", | |
short_description="Calcuate distance", | |
description_function=lambda place_1, place_2: "Calculating distances", | |
explanation_function=lambda result: result[2], | |
), | |
Function( | |
name="get_recommendations", | |
short_description="Read recommendations", | |
description_function=lambda topics, **__: f"Reading recommendations for the following " | |
+ ( | |
f"topics: {', '.join(topics)}" if len(topics) > 1 else f"topic: {topics[0]}" | |
), | |
explanation_function=lambda result: f"Read {len(result)} recommendations", | |
), | |
Function( | |
name="find_places_near_location", | |
short_description="Look for places", | |
description_function=lambda type_of_place, location, radius_miles=50: f"Looking for places near {location} within {radius_miles} with the following " | |
+ ( | |
f"types: {', '.join(type_of_place)}" | |
if isinstance(type_of_place, list) | |
else f"type: {type_of_place}" | |
), | |
explanation_function=lambda result: f"Found " | |
+ (f"{len(result)} places!" if len(result) > 1 else f"1 place!"), | |
), | |
Function( | |
name="get_some_reviews", | |
short_description="Fetching reviews", | |
description_function=lambda place_names, **_: f"Fetching reviews for the requested items", | |
explanation_function=lambda result: f"Fetched {len(result)} reviews!", | |
), | |
Function( | |
name="out_of_domain", | |
short_description="The provided query does not relate to locations, reviews, or recommendations.", | |
description_function=lambda user_query : "Irrelevant query detected.", | |
explanation_function = lambda user_query : "Irrelevant query detected." | |
) | |
] | |
class FunctionsHelper: | |
FUNCTION_DEFINITION_TEMPLATE = '''Function: | |
def {name}{signature}: | |
""" | |
{docstring} | |
""" | |
''' | |
PROMPT_TEMPLATE = \ | |
""" | |
{function_definitions} | |
Example: | |
User Query: I am driving from Austin to San Antonio, passing through San Marcos, give me good food for each stop. | |
Call: sort_results(places=get_recommendations(topics=["food"], lat_long=get_latitude_longitude(location="Austin")), sort="rating"); sort_results(places=get_recommendations(topics=["food"], lat_long=get_latitude_longitude(location="San Marcos")), sort="rating"); sort_results(places=get_recommendations(topics=["food"], lat_long=get_latitude_longitude(location="San Antonio")), sort="rating") | |
Example: | |
User Query: What's the nearest I need to walk to get some food near Stanford University? | |
Call: sort_results(places=get_recommendations(topics=["food"], lat_long=get_latitude_longitude(location="Stanford University")), sort="distance") | |
Example: | |
User Query: Can you tell me if I should go to San Francisco or San Jose for high end Japanese food? | |
Call: sort_results(places=get_recommendations(topics=["high-end food", "Japanese"], lat_long=get_latitude_longitude(location="San Francisco")), sort="rating"); sort_results(places=get_recommendations(topics=["high-end food", "Japanese"], lat_long=get_latitude_longitude(location="San Jose")), sort="rating"); get_some_reviews(place_names=sort_results(places=get_recommendations(topics=["high-end food", "Japanese"], lat_long=get_latitude_longitude(location="San Francisco")), sort="rating")); get_some_reviews(place_names=sort_results(places=get_recommendations(topics=["high-end food", "Japanese"], lat_long=get_latitude_longitude(location="San Jose")), sort="rating")) | |
Example: | |
User Query: What's this bird app stuff? | |
Call: out_of_domain(user_query="What's this bird app stuff") | |
Example: | |
User Query: What is your political affiliation? | |
Call: out_of_domain(user_query="What is your political affiliation?") | |
Example: | |
User Query: What are people saying about Chipotle in Austin? | |
Call: get_some_reviews(topics=["Chipotle"], lat_long=get_latitude_longitude(location="Austin")) | |
Example: | |
User Query: What are people saying about some of the better Chipotles in Austin? | |
Call: get_some_reviews(place_names=sort_results(places=get_recommendations(topics=["Chipotles"], lat_long=get_latitude_longitude(location="Austin")), sort="rating")) | |
User Query: {query}<human_end> | |
Call:""" | |
def __init__(self, tools: Tools) -> None: | |
self.tools = tools | |
function_definitions = "" | |
for function in FUNCTIONS: | |
f = getattr(tools, function.name) | |
signature = inspect.signature(f) | |
docstring = inspect.getdoc(f) | |
function_str = self.FUNCTION_DEFINITION_TEMPLATE.format( | |
name=function.name, signature=signature, docstring=docstring | |
) | |
function_definitions += function_str | |
self.prompt_without_query = self.PROMPT_TEMPLATE.format( | |
function_definitions=function_definitions, query="{query}" | |
) | |
def get_prompt(self, query: str): | |
return self.prompt_without_query.format(query=query) | |
def get_function_call_plan(self, function_call_str: str) -> List[str]: | |
function_call_list = [] | |
locals_to_pass = {"function_call_list": function_call_list} | |
for f in FUNCTIONS: | |
name = f.name | |
exec( | |
f"def {name}(**_):\n\tfunction_call_list.append('{f.short_description}')", | |
locals_to_pass, | |
) | |
calls = [c.strip() for c in function_call_str.split(";") if c.strip()] | |
[eval(call, locals_to_pass) for call in calls] | |
return function_call_list | |
def run_function_call(self, function_call_str: str): | |
function_call_list = [] | |
locals_to_pass = {"function_call_list": function_call_list, "tools": self.tools} | |
for f in FUNCTIONS: | |
name = f.name | |
locals_to_pass[f"{name}_description_function"] = f.description_function | |
locals_to_pass[f"{name}_explanation_function"] = f.explanation_function | |
function_definition = f""" | |
def {name}(**kwargs): | |
result = tools.{f.name}(**kwargs) | |
function_call_list.append(({name}_description_function(**kwargs), {name}_explanation_function(result))) | |
return result | |
""" | |
exec(function_definition, locals_to_pass) | |
calls = [c.strip() for c in function_call_str.split(";") if c.strip()] | |
for call in calls: | |
locals_to_pass["function_call_list"] = function_call_list = [] | |
result = eval(call, locals_to_pass) | |
yield result, function_call_list | |
class RavenDemo(gr.Blocks): | |
def __init__(self, config: DemoConfig) -> None: | |
theme = gr.themes.Soft( | |
primary_hue=gr.themes.colors.blue, | |
secondary_hue=gr.themes.colors.blue, | |
) | |
super().__init__(theme=theme, css=CSS, title="NexusRaven V2 Demo") | |
self.config = config | |
self.tools = Tools(config) | |
self.functions_helper = FunctionsHelper(self.tools) | |
mongo_client = MongoClient(host=config.mongo_endpoint) | |
self.collection = mongo_client[config.mongo_collection]["logs"] | |
self.raven_client = InferenceClient( | |
model=config.raven_endpoint, token=config.hf_token | |
) | |
self.summary_model_client = InferenceClient(config.summary_model_endpoint) | |
self.max_num_steps = 20 | |
self.function_call_name_set = set([f.name for f in FUNCTIONS]) | |
with self: | |
gr.HTML(HEADER_HTML) | |
with gr.Row(): | |
gr.Image( | |
"NexusRaven.png", | |
show_label=False, | |
show_share_button=True, | |
min_width=200, | |
scale=1, | |
) | |
with gr.Column(scale=4, min_width=800): | |
gr.Markdown(INTRO_TEXT, elem_classes="inner-large-font") | |
with gr.Row(): | |
examples = [ | |
gr.Button(query_name) for query_name in EXAMPLE_QUERIES | |
] | |
user_input = gr.Textbox( | |
placeholder="Ask anything about places, recommendations, or reviews!", | |
show_label=False, | |
autofocus=True, | |
) | |
should_chat = gr.Checkbox(label="Enable Chat Summary", info="If set, summarizes the returned results.", value=True) | |
raven_function_call = gr.Code( | |
label="π¦ββ¬ NexusRaven V2 13B zero-shot generated function call", | |
language="python", | |
interactive=False, | |
lines=10, | |
) | |
with gr.Accordion( | |
"Executing plan generated by π¦ββ¬ NexusRaven V2 13B", open=True | |
) as steps_accordion: | |
steps = [ | |
gr.Textbox(visible=False, show_label=False) | |
for _ in range(self.max_num_steps) | |
] | |
with gr.Column(): | |
initial_relevant_places = self.get_relevant_places([]) | |
relevant_places = gr.State(initial_relevant_places) | |
place_dropdown_choices = self.get_place_dropdown_choices( | |
initial_relevant_places | |
) | |
places_dropdown = gr.Dropdown( | |
choices=place_dropdown_choices, | |
value=place_dropdown_choices[0], | |
label="Relevant places", | |
) | |
gmaps_html = gr.HTML(self.get_gmaps_html(initial_relevant_places[0])) | |
summary_model_summary = gr.Textbox( | |
label="Chat summary", | |
interactive=False, | |
show_copy_button=True, | |
lines=10, | |
max_lines=1000, | |
autoscroll=False, | |
elem_classes="inner-large-font", | |
) | |
with gr.Accordion("Raven inputs", open=False): | |
gr.Textbox( | |
label="Available functions", | |
value="`" + "`, `".join(f.name for f in FUNCTIONS) + "`", | |
interactive=False, | |
show_copy_button=True, | |
) | |
gr.Textbox( | |
label="Raven prompt", | |
value=self.functions_helper.get_prompt("{query}"), | |
interactive=False, | |
show_copy_button=True, | |
lines=20, | |
) | |
has_error = gr.State(False) | |
user_input.submit( | |
fn=self.on_submit, | |
inputs=[user_input, should_chat], | |
outputs=[ | |
user_input, | |
raven_function_call, | |
summary_model_summary, | |
relevant_places, | |
places_dropdown, | |
gmaps_html, | |
steps_accordion, | |
*steps, | |
has_error, | |
], | |
concurrency_limit=20, # not a hyperparameter | |
api_name=False, | |
).then( | |
self.check_for_error, | |
inputs=has_error, | |
outputs=[], | |
) | |
for i, button in enumerate(examples): | |
button.click( | |
fn=EXAMPLE_QUERIES.get, | |
inputs=button, | |
outputs=user_input, | |
api_name=f"button_click_{i}", | |
) | |
places_dropdown.input( | |
fn=self.get_gmaps_html_from_dropdown, | |
inputs=[places_dropdown, relevant_places], | |
outputs=gmaps_html, | |
) | |
def on_submit(self, query: str, should_chat : bool, request: gr.Request): | |
def get_returns(): | |
return ( | |
user_input, | |
raven_function_call, | |
summary_model_summary, | |
relevant_places, | |
places_dropdown, | |
gmaps_html, | |
steps_accordion, | |
*steps, | |
has_error, | |
) | |
def on_error(): | |
initial_return[0] = gr.Textbox(interactive=True, autofocus=False) | |
initial_return[-1] = True | |
return initial_return | |
user_input = gr.Textbox(interactive=False) | |
raven_function_call = "" | |
summary_model_summary = "" | |
relevant_places = [] | |
places_dropdown = "" | |
gmaps_html = "" | |
steps_accordion = gr.Accordion(open=True) | |
steps = [gr.Textbox(value="", visible=False) for _ in range(self.max_num_steps)] | |
has_error = False | |
initial_return = list(get_returns()) | |
yield initial_return | |
raven_prompt = self.functions_helper.get_prompt( | |
query.replace("'", r"\'").replace('"', r"\"") | |
) | |
print(f"{'-' * 80}\nPrompt sent to Raven\n\n{raven_prompt}\n\n{'-' * 80}\n") | |
stream = self.raven_client.text_generation( | |
raven_prompt, **RAVEN_GENERATION_KWARGS | |
) | |
for s in stream: | |
for c in s: | |
raven_function_call += c | |
raven_function_call = raven_function_call.removesuffix("Thought:").removesuffix("<bot_end>") | |
yield get_returns() | |
raw_raven_response = raven_function_call | |
print(f"Raw Raven response before formatting: {raw_raven_response}") | |
r_calls = [c.strip() for c in raven_function_call.split(";") if c.strip()] | |
f_r_calls = [] | |
for r_c in r_calls: | |
try: | |
f_r_call = format_str(r_c.strip(), mode=Mode()) | |
except: | |
yield on_error() | |
return | |
if not self.whitelist_function_names(f_r_call): | |
yield on_error() | |
return | |
f_r_calls.append(f_r_call) | |
raven_function_call = "; ".join(f_r_calls) | |
yield get_returns() | |
self._set_client_ip(request) | |
function_call_plan = self.functions_helper.get_function_call_plan( | |
raven_function_call | |
) | |
for i, v in enumerate(function_call_plan): | |
steps[i] = gr.Textbox(value=f"{i+1}. {v}", visible=True) | |
yield get_returns() | |
sleep(0.1) | |
results_gen = self.functions_helper.run_function_call(raven_function_call) | |
results = [] | |
previous_num_calls = 0 | |
for result, function_call_list in results_gen: | |
results.extend(result) | |
for i, (description, explanation) in enumerate(function_call_list): | |
i = i + previous_num_calls | |
if len(description) > 100: | |
description = function_call_plan[i] | |
to_stream = f"{i+1}. {description} ..." | |
steps[i] = "" | |
for c in to_stream: | |
steps[i] += c | |
sleep(0.005) | |
yield get_returns() | |
to_stream = "." * randint(0, 5) | |
for c in to_stream: | |
steps[i] += c | |
sleep(0.2) | |
yield get_returns() | |
to_stream = f" {explanation}" | |
for c in to_stream: | |
steps[i] += c | |
sleep(0.005) | |
yield get_returns() | |
previous_num_calls += len(function_call_list) | |
try: | |
relevant_places = self.get_relevant_places(results) | |
except: | |
relevant_places = self.get_relevant_places([]) | |
gmaps_html = self.get_gmaps_html(relevant_places[0]) | |
places_dropdown_choices = self.get_place_dropdown_choices(relevant_places) | |
places_dropdown = gr.Dropdown( | |
choices=places_dropdown_choices, value=places_dropdown_choices[0] | |
) | |
steps_accordion = gr.Accordion(open=False) | |
yield get_returns() | |
while True and should_chat: | |
try: | |
summary_model_prompt = self.get_summary_model_prompt(results, query) | |
print( | |
f"{'-' * 80}\nPrompt sent to summary model\n\n{summary_model_prompt}\n\n{'-' * 80}\n" | |
) | |
stream = self.summary_model_client.text_generation( | |
summary_model_prompt, **SUMMARY_MODEL_GENERATION_KWARGS | |
) | |
for s in stream: | |
s = s.removesuffix("</s>") | |
for c in s: | |
summary_model_summary += c | |
summary_model_summary = ( | |
summary_model_summary.lstrip().removesuffix( | |
"</s>" | |
) | |
) | |
yield get_returns() | |
except huggingface_hub.inference._text_generation.ValidationError: | |
if len(results) > 1: | |
new_length = (3 * len(results)) // 4 | |
results = results[:new_length] | |
continue | |
else: | |
break | |
break | |
self.collection.insert_one( | |
{ | |
"query": query, | |
"raven_output": raw_raven_response, | |
"summary_output": summary_model_summary, | |
} | |
) | |
user_input = gr.Textbox(interactive=True, autofocus=False) | |
yield get_returns() | |
def check_for_error(self, has_error: bool) -> None: | |
if has_error: | |
raise gr.Error(ERROR_MESSAGE) | |
def whitelist_function_names(self, function_call_str: str) -> bool: | |
""" | |
Defensive function name whitelisting inspired by @evan-nexusflow | |
""" | |
for expr in ast.walk(ast.parse(function_call_str)): | |
if not isinstance(expr, ast.Call): | |
continue | |
expr: ast.Call | |
function_name = expr.func.id | |
if function_name not in self.function_call_name_set: | |
return False | |
return True | |
def get_summary_model_prompt(self, results: List, query: str) -> None: | |
# TODO check what outputs are returned and return them properly | |
ALLOWED_KEYS = [ | |
"author_name", | |
"text", | |
"for_location", | |
"time", | |
"author_url", | |
"language", | |
"original_language", | |
"name", | |
"opening_hours", | |
"rating", | |
"user_ratings_total", | |
"vicinity", | |
"distance", | |
"formatted_address", | |
"price_level", | |
"types", | |
] | |
ALLOWED_KEYS = set(ALLOWED_KEYS) | |
results_str = "" | |
for idx, res in enumerate(results): | |
if isinstance(res, str): | |
results_str += f"{res}\n" | |
continue | |
assert isinstance(res, dict) | |
item_str = "" | |
for key, value in res.items(): | |
if key not in ALLOWED_KEYS: | |
continue | |
key = key.replace("_", " ").capitalize() | |
item_str += f"\t{key}: {value}\n" | |
results_str += f"Result {idx + 1}\n{item_str}\n" | |
current_time = datetime.now().strftime("%b %d, %Y %H:%M:%S") | |
try: | |
current_location = self.tools.get_current_location()[0] | |
except: | |
current_location = "Current location not found." | |
prompt = SUMMARY_MODEL_PROMPT.format( | |
current_location=current_location, | |
current_time=current_time, | |
results=results_str, | |
query=query, | |
) | |
return prompt | |
def get_relevant_places(self, results: List) -> List[Tuple[str, str]]: | |
""" | |
Returns | |
------- | |
relevant_places: List[Tuple[str, str]] | |
A list of tuples, where each tuple is (address, name) | |
""" | |
# We use a dict to preserve ordering, while enforcing uniqueness | |
relevant_places = dict() | |
for result in results: | |
if "formatted_address" in result and "name" in result: | |
relevant_places[(result["formatted_address"], result["name"])] = None | |
elif "formatted_address" in result and "for_location" in result: | |
relevant_places[ | |
(result["formatted_address"], result["for_location"]) | |
] = None | |
elif "vicinity" in result and "name" in result: | |
relevant_places[(result["vicinity"], result["name"])] = None | |
relevant_places = list(relevant_places.keys()) | |
if not relevant_places: | |
current_location = self.tools.get_current_location()[0] | |
relevant_places.append((current_location, current_location)) | |
return relevant_places | |
def get_place_dropdown_choices( | |
self, relevant_places: List[Tuple[str, str]] | |
) -> List[str]: | |
return [p[1] for p in relevant_places] | |
def get_gmaps_html(self, relevant_place: Tuple[str, str]) -> str: | |
address, name = relevant_place | |
return GMAPS_EMBED_HTML_TEMPLATE.format( | |
address=quote(address), location=quote(name) | |
) | |
def get_gmaps_html_from_dropdown( | |
self, place_name: str, relevant_places: List[Tuple[str, str]] | |
) -> str: | |
relevant_place = [p for p in relevant_places if p[1] == place_name][0] | |
return self.get_gmaps_html(relevant_place) | |
def _set_client_ip(self, request: gr.Request) -> None: | |
client_ip = request.client.host | |
if ( | |
"headers" in request.kwargs | |
and "x-forwarded-for" in request.kwargs["headers"] | |
): | |
x_forwarded_for = request.kwargs["headers"]["x-forwarded-for"] | |
else: | |
x_forwarded_for = request.headers.get("x-forwarded-for", None) | |
if x_forwarded_for: | |
client_ip = x_forwarded_for.split(",")[0].strip() | |
self.tools.client_ip = client_ip | |
demo = RavenDemo(DemoConfig.load_from_env()) | |
if __name__ == "__main__": | |
demo.launch( | |
share=True, | |
allowed_paths=["logo.png", "NexusRaven.png"], | |
favicon_path="logo.png", | |
) |