File size: 22,984 Bytes
6b08132
5321b2e
6b08132
5321b2e
6b08132
5321b2e
6b08132
5321b2e
6b08132
5321b2e
6b08132
5321b2e
64d7e88
 
6b08132
5321b2e
6b08132
5321b2e
6b08132
5321b2e
6b08132
5321b2e
6b08132
5321b2e
ff53a6a
 
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8532708
ab37a24
8532708
 
 
 
6b08132
 
 
 
 
 
 
 
 
5321b2e
6b08132
118860b
 
 
 
 
 
ffa95ac
 
90aacda
 
32603c2
 
 
 
118860b
 
 
 
5321b2e
6b08132
 
5321b2e
6b08132
 
 
 
 
5321b2e
6b08132
 
 
 
5321b2e
6b08132
 
5321b2e
 
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5321b2e
6b08132
 
 
 
 
5321b2e
 
6b08132
 
 
 
 
5321b2e
6b08132
5321b2e
6b08132
 
 
ff53a6a
 
5321b2e
6b08132
 
 
 
 
 
64d7e88
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
155f54a
6b08132
 
 
0c2ebc2
6b08132
cd44644
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5321b2e
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca9dc96
6b08132
 
0c2ebc2
6b08132
 
 
 
 
 
 
 
 
ca9dc96
6b08132
 
 
ca9dc96
 
 
 
6b08132
5321b2e
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
0c2ebc2
6b08132
 
 
 
 
 
 
 
 
 
ca9dc96
6b08132
 
64d7e88
 
ca9dc96
64d7e88
 
6b08132
 
 
 
 
 
 
 
ca9dc96
64d7e88
 
6b08132
 
 
5321b2e
6b08132
 
 
 
 
 
 
 
 
5321b2e
ff53a6a
 
989d2f2
6b08132
 
 
64d7e88
 
 
 
 
 
 
 
 
 
6b08132
5321b2e
6b08132
5321b2e
6b08132
5321b2e
6b08132
 
 
5321b2e
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5a7c394
 
 
 
 
6b08132
 
 
 
 
 
 
 
0c2ebc2
6b08132
 
 
 
 
 
 
 
 
cdc924d
6b08132
 
 
 
cdc924d
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
ff53a6a
 
 
 
 
 
 
 
20eaf0c
6b08132
 
ca9dc96
 
 
 
64d7e88
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5321b2e
 
6b08132
5321b2e
6b08132
 
 
 
5321b2e
6b08132
 
5321b2e
6b08132
 
 
4093962
1c4f8f5
4093962
 
6b08132
 
 
 
 
 
 
 
 
 
5321b2e
6b08132
 
 
 
5321b2e
 
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1c4f8f5
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
5321b2e
6b08132
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5321b2e
6b08132
5321b2e
 
6b08132
5321b2e
6b08132
 
 
 
 
4093962
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
from typing import Any, Callable, List, Tuple

import huggingface_hub

from dataclasses import dataclass

from datetime import datetime

from time import sleep

import inspect

import ast

from random import randint

from urllib.parse import quote

from black import Mode, format_str

import gradio as gr

from huggingface_hub import InferenceClient

from pymongo import MongoClient

from constants import *
from config import DemoConfig
from tools import Tools


@dataclass
class Function:
    name: str
    short_description: str
    description_function: Callable[[Any], str]
    explanation_function: Callable[[Any], str]


FUNCTIONS = [
    Function(
        name="get_current_location",
        short_description="Finding your city",
        description_function=lambda *_, **__: "Finding your city",
        explanation_function=lambda result: f"Found you in {result}!",
    ),
    Function(
        name="sort_results",
        short_description="Sorting results",
        description_function=lambda places, sort, descending=True, first_n=None: f"Sorting results by {sort} from "
        + ("lowest to highest" if not descending else "highest to lowest"),
        explanation_function=lambda result: "Done!",
    ),
    Function(
        name="get_latitude_longitude",
        short_description="Convert to coordinates",
        description_function=lambda location: f"Converting {location} into latitude and longitude coordinates",
        explanation_function=lambda result: "Converted!",
    ),
    Function(
        name="get_distance",
        short_description="Calcuate distance",
        description_function=lambda place_1, place_2: "Calculating distances",
        explanation_function=lambda result: result[2],
    ),
    Function(
        name="get_recommendations",
        short_description="Read recommendations",
        description_function=lambda topics, **__: f"Reading recommendations for the following "
        + (
            f"topics: {', '.join(topics)}" if len(topics) > 1 else f"topic: {topics[0]}"
        ),
        explanation_function=lambda result: f"Read {len(result)} recommendations",
    ),
    Function(
        name="find_places_near_location",
        short_description="Look for places",
        description_function=lambda type_of_place, location, radius_miles=50: f"Looking for places near {location} within {radius_miles} with the following "
        + (
            f"types: {', '.join(type_of_place)}"
            if isinstance(type_of_place, list)
            else f"type: {type_of_place}"
        ),
        explanation_function=lambda result: f"Found "
        + (f"{len(result)} places!" if len(result) > 1 else f"1 place!"),
    ),
    Function(
        name="get_some_reviews",
        short_description="Fetching reviews",
        description_function=lambda place_names, **_: f"Fetching reviews for the requested items",
        explanation_function=lambda result: f"Fetched {len(result)} reviews!",
    ),
    Function(
        name="out_of_domain",
        short_description="The provided query does not relate to locations, reviews, or recommendations.",
        description_function=lambda user_query : "Irrelevant query detected.",
        explanation_function = lambda user_query : "Irrelevant query detected."
    )
]


class FunctionsHelper:
    FUNCTION_DEFINITION_TEMPLATE = '''Function:
def {name}{signature}:
"""
{docstring}
"""

'''
    PROMPT_TEMPLATE = \
"""
{function_definitions}

User Query: I am driving from Austin to San Antonio, passing through San Marcos, give me good food for each stop.
Call: sort_results(places=get_recommendations(topics=["food"], lat_long=get_latitude_longitude(location="Austin")), sort="rating"); sort_results(places=get_recommendations(topics=["food"], lat_long=get_latitude_longitude(location="San Marcos")), sort="rating"); sort_results(places=get_recommendations(topics=["food"], lat_long=get_latitude_longitude(location="San Antonio")), sort="rating")
User Query: What's the nearest I need to walk to get some food near Stanford University?
Call: sort_results(places=get_recommendations(topics=["food"], lat_long=get_latitude_longitude(location="Stanford University")), sort="distance")
User Query: Can you tell me if I should go to San Francisco or San Jose for high end Japanese food?
Call: sort_results(places=get_recommendations(topics=["high-end food", "Japanese"], lat_long=get_latitude_longitude(location="San Francisco")), sort="rating"); sort_results(places=get_recommendations(topics=["high-end food", "Japanese"], lat_long=get_latitude_longitude(location="San Jose")), sort="rating"); get_some_reviews(place_names=sort_results(places=get_recommendations(topics=["high-end food", "Japanese"], lat_long=get_latitude_longitude(location="San Francisco")), sort="rating")); get_some_reviews(place_names=sort_results(places=get_recommendations(topics=["high-end food", "Japanese"], lat_long=get_latitude_longitude(location="San Jose")), sort="rating"))
User Query: What's this bird app stuff?
Call: out_of_domain(query="What's this bird app stuff")
User Query: What is your political affiliation?
Call: out_of_domain(query="What is your political affiliation?")

User Query: {query}<human_end>

Call:"""

    def __init__(self, tools: Tools) -> None:
        self.tools = tools

        function_definitions = ""
        for function in FUNCTIONS:
            f = getattr(tools, function.name)
            signature = inspect.signature(f)
            docstring = inspect.getdoc(f)

            function_str = self.FUNCTION_DEFINITION_TEMPLATE.format(
                name=function.name, signature=signature, docstring=docstring
            )
            function_definitions += function_str

        self.prompt_without_query = self.PROMPT_TEMPLATE.format(
            function_definitions=function_definitions, query="{query}"
        )

    def get_prompt(self, query: str):
        return self.prompt_without_query.format(query=query)

    def get_function_call_plan(self, function_call_str: str) -> List[str]:
        function_call_list = []
        locals_to_pass = {"function_call_list": function_call_list}
        for f in FUNCTIONS:
            name = f.name
            exec(
                f"def {name}(**_):\n\tfunction_call_list.append('{f.short_description}')",
                locals_to_pass,
            )
        calls = [c.strip() for c in function_call_str.split(";") if c.strip()]
        [eval(call, locals_to_pass) for call in calls]
        return function_call_list

    def run_function_call(self, function_call_str: str):
        function_call_list = []
        locals_to_pass = {"function_call_list": function_call_list, "tools": self.tools}
        for f in FUNCTIONS:
            name = f.name

            locals_to_pass[f"{name}_description_function"] = f.description_function
            locals_to_pass[f"{name}_explanation_function"] = f.explanation_function

            function_definition = f"""
def {name}(**kwargs):
    result = tools.{f.name}(**kwargs)
    function_call_list.append(({name}_description_function(**kwargs), {name}_explanation_function(result)))
    return result
"""
            exec(function_definition, locals_to_pass)

        calls = [c.strip() for c in function_call_str.split(";") if c.strip()]
        for call in calls:
            locals_to_pass["function_call_list"] = function_call_list = []
            result = eval(call, locals_to_pass)
            yield result, function_call_list


class RavenDemo(gr.Blocks):
    def __init__(self, config: DemoConfig) -> None:
        theme = gr.themes.Soft(
            primary_hue=gr.themes.colors.blue,
            secondary_hue=gr.themes.colors.blue,
        )
        super().__init__(theme=theme, css=CSS, title="NexusRaven V2 Demo")

        self.config = config
        self.tools = Tools(config)
        self.functions_helper = FunctionsHelper(self.tools)
        mongo_client = MongoClient(host=config.mongo_endpoint)
        self.collection = mongo_client[config.mongo_collection]["logs"]

        self.raven_client = InferenceClient(
            model=config.raven_endpoint, token=config.hf_token
        )
        self.summary_model_client = InferenceClient(config.summary_model_endpoint)

        self.max_num_steps = 20
        self.function_call_name_set = set([f.name for f in FUNCTIONS])

        with self:
            gr.HTML(HEADER_HTML)
            with gr.Row():
                gr.Image(
                    "NexusRaven.png",
                    show_label=False,
                    show_share_button=True,
                    min_width=200,
                    scale=1,
                )
                with gr.Column(scale=4, min_width=800):
                    gr.Markdown(INTRO_TEXT, elem_classes="inner-large-font")
                    with gr.Row():
                        examples = [
                            gr.Button(query_name) for query_name in EXAMPLE_QUERIES
                        ]

            user_input = gr.Textbox(
                placeholder="Ask anything about places, recommendations, or reviews!",
                show_label=False,
                autofocus=True,
            )
            should_chat = gr.Checkbox(label="Enable Chat Summary", info="If set, summarizes the returned results.", value=True)
            raven_function_call = gr.Code(
                label="πŸ¦β€β¬› NexusRaven V2 13B zero-shot generated function call",
                language="python",
                interactive=False,
                lines=10,
            )
            with gr.Accordion(
                "Executing plan generated by πŸ¦β€β¬› NexusRaven V2 13B", open=True
            ) as steps_accordion:
                steps = [
                    gr.Textbox(visible=False, show_label=False)
                    for _ in range(self.max_num_steps)
                ]

            with gr.Column():
                initial_relevant_places = self.get_relevant_places([])
                relevant_places = gr.State(initial_relevant_places)
                place_dropdown_choices = self.get_place_dropdown_choices(
                    initial_relevant_places
                )
                places_dropdown = gr.Dropdown(
                    choices=place_dropdown_choices,
                    value=place_dropdown_choices[0],
                    label="Relevant places",
                )
                gmaps_html = gr.HTML(self.get_gmaps_html(initial_relevant_places[0]))

            summary_model_summary = gr.Textbox(
                label="Chat summary",
                interactive=False,
                show_copy_button=True,
                lines=10,
                max_lines=1000,
                autoscroll=False,
                elem_classes="inner-large-font",
            )

            with gr.Accordion("Raven inputs", open=False):
                gr.Textbox(
                    label="Available functions",
                    value="`" + "`, `".join(f.name for f in FUNCTIONS) + "`",
                    interactive=False,
                    show_copy_button=True,
                )
                gr.Textbox(
                    label="Raven prompt",
                    value=self.functions_helper.get_prompt("{query}"),
                    interactive=False,
                    show_copy_button=True,
                    lines=20,
                )

            has_error = gr.State(False)
            user_input.submit(
                fn=self.on_submit,
                inputs=[user_input, should_chat],
                outputs=[
                    user_input,
                    raven_function_call,
                    summary_model_summary,
                    relevant_places,
                    places_dropdown,
                    gmaps_html,
                    steps_accordion,
                    *steps,
                    has_error,
                ],
                concurrency_limit=20,  # not a hyperparameter
                api_name=False,
            ).then(
                self.check_for_error,
                inputs=has_error,
                outputs=[],
            )

            for i, button in enumerate(examples):
                button.click(
                    fn=EXAMPLE_QUERIES.get,
                    inputs=button,
                    outputs=user_input,
                    api_name=f"button_click_{i}",
                )

            places_dropdown.input(
                fn=self.get_gmaps_html_from_dropdown,
                inputs=[places_dropdown, relevant_places],
                outputs=gmaps_html,
            )

    def on_submit(self, query: str, should_chat : bool, request: gr.Request):
        def get_returns():
            return (
                user_input,
                raven_function_call,
                summary_model_summary,
                relevant_places,
                places_dropdown,
                gmaps_html,
                steps_accordion,
                *steps,
                has_error,
            )

        def on_error():
            initial_return[0] = gr.Textbox(interactive=True, autofocus=False)
            initial_return[-1] = True
            return initial_return

        user_input = gr.Textbox(interactive=False)
        raven_function_call = ""
        summary_model_summary = ""
        relevant_places = []
        places_dropdown = ""
        gmaps_html = ""
        steps_accordion = gr.Accordion(open=True)
        steps = [gr.Textbox(value="", visible=False) for _ in range(self.max_num_steps)]
        has_error = False
        initial_return = list(get_returns())
        yield initial_return

        raven_prompt = self.functions_helper.get_prompt(
            query.replace("'", r"\'").replace('"', r"\"")
        )
        print(f"{'-' * 80}\nPrompt sent to Raven\n\n{raven_prompt}\n\n{'-' * 80}\n")
        stream = self.raven_client.text_generation(
            raven_prompt, **RAVEN_GENERATION_KWARGS
        )
        for s in stream:
            for c in s:
                raven_function_call += c
                raven_function_call = raven_function_call.removesuffix("<bot_end>")
                yield get_returns()

        raw_raven_response = raven_function_call
        print(f"Raw Raven response before formatting: {raw_raven_response}")

        r_calls = [c.strip() for c in raven_function_call.split(";") if c.strip()]
        f_r_calls = []
        for r_c in r_calls:
            try:
                f_r_call = format_str(r_c.strip(), mode=Mode())
            except:
                yield on_error()
                return

            if not self.whitelist_function_names(f_r_call):
                yield on_error()
                return

            f_r_calls.append(f_r_call)

        raven_function_call = "; ".join(f_r_calls)

        yield get_returns()

        self._set_client_ip(request)
        function_call_plan = self.functions_helper.get_function_call_plan(
            raven_function_call
        )
        for i, v in enumerate(function_call_plan):
            steps[i] = gr.Textbox(value=f"{i+1}. {v}", visible=True)
            yield get_returns()
            sleep(0.1)

        results_gen = self.functions_helper.run_function_call(raven_function_call)
        results = []
        previous_num_calls = 0
        for result, function_call_list in results_gen:
            results.extend(result)
            for i, (description, explanation) in enumerate(function_call_list):
                i = i + previous_num_calls

                if len(description) > 100:
                    description = function_call_plan[i]
                to_stream = f"{i+1}. {description} ..."
                steps[i] = ""
                for c in to_stream:
                    steps[i] += c
                    sleep(0.005)
                    yield get_returns()

                to_stream = "." * randint(0, 5)
                for c in to_stream:
                    steps[i] += c
                    sleep(0.2)
                    yield get_returns()

                to_stream = f" {explanation}"
                for c in to_stream:
                    steps[i] += c
                    sleep(0.005)
                    yield get_returns()

            previous_num_calls += len(function_call_list)

        try:
            relevant_places = self.get_relevant_places(results)
        except:
            relevant_places = self.get_relevant_places([])

        gmaps_html = self.get_gmaps_html(relevant_places[0])
        places_dropdown_choices = self.get_place_dropdown_choices(relevant_places)
        places_dropdown = gr.Dropdown(
            choices=places_dropdown_choices, value=places_dropdown_choices[0]
        )
        steps_accordion = gr.Accordion(open=False)
        yield get_returns()

        while True and should_chat:
            try:
                summary_model_prompt = self.get_summary_model_prompt(results, query)
                print(
                    f"{'-' * 80}\nPrompt sent to summary model\n\n{summary_model_prompt}\n\n{'-' * 80}\n"
                )
                stream = self.summary_model_client.text_generation(
                    summary_model_prompt, **SUMMARY_MODEL_GENERATION_KWARGS
                )
                for s in stream:
                    s = s.removesuffix("</s>")
                    for c in s:
                        summary_model_summary += c
                        summary_model_summary = (
                            summary_model_summary.lstrip().removesuffix(
                                "</s>"
                            )
                        )
                        yield get_returns()
            except huggingface_hub.inference._text_generation.ValidationError:
                if len(results) > 1:
                    new_length = (3 * len(results)) // 4
                    results = results[:new_length]
                    continue
                else:
                    break

            break

        self.collection.insert_one(
            {
                "query": query,
                "raven_output": raw_raven_response,
                "summary_output": summary_model_summary,
            }
        )

        user_input = gr.Textbox(interactive=True, autofocus=False)
        yield get_returns()

    def check_for_error(self, has_error: bool) -> None:
        if has_error:
            raise gr.Error(ERROR_MESSAGE)

    def whitelist_function_names(self, function_call_str: str) -> bool:
        """
        Defensive function name whitelisting inspired by @evan-nexusflow
        """
        for expr in ast.walk(ast.parse(function_call_str)):
            if not isinstance(expr, ast.Call):
                continue

            expr: ast.Call
            function_name = expr.func.id
            if function_name not in self.function_call_name_set:
                return False

        return True

    def get_summary_model_prompt(self, results: List, query: str) -> None:
        # TODO check what outputs are returned and return them properly
        ALLOWED_KEYS = [
            "author_name",
            "text",
            "for_location",
            "time",
            "author_url",
            "language",
            "original_language",
            "name",
            "opening_hours",
            "rating",
            "user_ratings_total",
            "vicinity",
            "distance",
            "formatted_address",
            "price_level",
            "types",
        ]
        ALLOWED_KEYS = set(ALLOWED_KEYS)

        results_str = ""
        for idx, res in enumerate(results):
            if isinstance(res, str):
                results_str += f"{res}\n"
                continue

            assert isinstance(res, dict)

            item_str = ""
            for key, value in res.items():
                if key not in ALLOWED_KEYS:
                    continue

                key = key.replace("_", " ").capitalize()
                item_str += f"\t{key}: {value}\n"

            results_str += f"Result {idx + 1}\n{item_str}\n"

        current_time = datetime.now().strftime("%b %d, %Y %H:%M:%S")
        try:
            current_location = self.tools.get_current_location()[0]
        except:
            current_location = "Current location not found."

        prompt = SUMMARY_MODEL_PROMPT.format(
            current_location=current_location,
            current_time=current_time,
            results=results_str,
            query=query,
        )
        return prompt

    def get_relevant_places(self, results: List) -> List[Tuple[str, str]]:
        """
        Returns
        -------
        relevant_places: List[Tuple[str, str]]
            A list of tuples, where each tuple is (address, name)

        """
        # We use a dict to preserve ordering, while enforcing uniqueness
        relevant_places = dict()
        for result in results:
            if "formatted_address" in result and "name" in result:
                relevant_places[(result["formatted_address"], result["name"])] = None
            elif "formatted_address" in result and "for_location" in result:
                relevant_places[
                    (result["formatted_address"], result["for_location"])
                ] = None
            elif "vicinity" in result and "name" in result:
                relevant_places[(result["vicinity"], result["name"])] = None

        relevant_places = list(relevant_places.keys())

        if not relevant_places:
            current_location = self.tools.get_current_location()[0]
            relevant_places.append((current_location, current_location))

        return relevant_places

    def get_place_dropdown_choices(
        self, relevant_places: List[Tuple[str, str]]
    ) -> List[str]:
        return [p[1] for p in relevant_places]

    def get_gmaps_html(self, relevant_place: Tuple[str, str]) -> str:
        address, name = relevant_place
        return GMAPS_EMBED_HTML_TEMPLATE.format(
            address=quote(address), location=quote(name)
        )

    def get_gmaps_html_from_dropdown(
        self, place_name: str, relevant_places: List[Tuple[str, str]]
    ) -> str:
        relevant_place = [p for p in relevant_places if p[1] == place_name][0]
        return self.get_gmaps_html(relevant_place)

    def _set_client_ip(self, request: gr.Request) -> None:
        client_ip = request.client.host
        if (
            "headers" in request.kwargs
            and "x-forwarded-for" in request.kwargs["headers"]
        ):
            x_forwarded_for = request.kwargs["headers"]["x-forwarded-for"]
        else:
            x_forwarded_for = request.headers.get("x-forwarded-for", None)
        if x_forwarded_for:
            client_ip = x_forwarded_for.split(",")[0].strip()

        self.tools.client_ip = client_ip


demo = RavenDemo(DemoConfig.load_from_env())

if __name__ == "__main__":
    demo.launch(
        share=True,
        allowed_paths=["logo.png", "NexusRaven.png"],
        favicon_path="logo.png",
    )