File size: 18,078 Bytes
5321b2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
from typing import Any, Callable, List, Tuple

import huggingface_hub

from dataclasses import dataclass

from datetime import datetime

from time import sleep

import inspect

from random import randint

from urllib.parse import quote

from black import Mode, format_str

import gradio as gr

from huggingface_hub import InferenceClient

from constants import *
from config import DemoConfig
from tools import Tools


@dataclass
class Function:
    name: str
    short_description: str
    description_function: Callable[[Any], str]
    explanation_function: Callable[[Any], str]


FUNCTIONS = [
    Function(
        name="get_current_location",
        short_description="Finding your city",
        description_function=lambda *_, **__: "Finding your city",
        explanation_function=lambda result: f"Found you in {result}!",
    ),
    Function(
        name="sort_results",
        short_description="Sorting results",
        description_function=lambda places, sort, descending=True, first_n = None: f"Sorting results by {sort} from "
        + ("lowest to highest" if not descending else "highest to lowest"),
        explanation_function=lambda result: "Done!",
    ),
    Function(
        name="get_latitude_longitude",
        short_description="Convert to coordinates",
        description_function=lambda location: f"Converting {location} into latitude and longitude coordinates",
        explanation_function=lambda result: "Converted!",
    ),
    Function(
        name="get_distance",
        short_description="Calcuate distance",
        description_function=lambda place_1, place_2: f"Calculating the distance between various places...",
        explanation_function=lambda result: result[0],
    ),
    Function(
        name="get_recommendations",
        short_description="Read recommendations",
        description_function=lambda topics, **__: f"Reading recommendations for the following "
        + (
            f"topics: {', '.join(topics)}" if len(topics) > 1 else f"topic: {topics[0]}"
        ),
        explanation_function=lambda result: f"Read {len(result)} recommendations",
    ),
    Function(
        name="find_places_near_location",
        short_description="Look for places",
        description_function=lambda type_of_place, location, radius_miles = 50: f"Looking for places near {location} within {radius_miles} with the following "
        + (
            f"types: {', '.join(type_of_place)}"
            if isinstance(type_of_place, list)
            else f"type: {type_of_place}"
        ),
        explanation_function=lambda result: f"Found {len(result)} places!",
    ),
    Function(
        name="get_some_reviews",
        short_description="Fetching reviews",
        description_function=lambda place_names, **_: f"Fetching reviews for the requested items",
        explanation_function=lambda result: f"Fetched {len(result)} reviews!",
    ),
]


class FunctionsHelper:
    FUNCTION_DEFINITION_TEMPLATE = '''Function:
def {name}{signature}:
"""
{docstring}
"""

'''
    PROMPT_TEMPLATE = """{function_definitions}User Query: {query}<human_end>Call:"""

    def __init__(self, tools: Tools) -> None:
        self.tools = tools

        function_definitions = ""
        for function in FUNCTIONS:
            f = getattr(tools, function.name)
            signature = inspect.signature(f)
            docstring = inspect.getdoc(f)

            function_str = self.FUNCTION_DEFINITION_TEMPLATE.format(
                name=function.name, signature=signature, docstring=docstring
            )
            function_definitions += function_str

        self.prompt_without_query = self.PROMPT_TEMPLATE.format(
            function_definitions=function_definitions, query="{query}"
        )

    def get_prompt(self, query: str):
        return self.prompt_without_query.format(query=query)

    def get_function_call_plan(self, function_call_str: str) -> List[str]:
        function_call_list = []
        locals_to_pass = {"function_call_list": function_call_list}
        for f in FUNCTIONS:
            name = f.name
            exec(
                f"def {name}(**_):\n\tfunction_call_list.append('{f.short_description}')",
                locals_to_pass,
            )
        calls = [c.strip() for c in function_call_str.split(";") if c.strip()]
        [eval(call, locals_to_pass) for call in calls]
        return function_call_list

    def run_function_call(self, function_call_str: str):
        function_call_list = []
        locals_to_pass = {"function_call_list": function_call_list, "tools": self.tools}
        for f in FUNCTIONS:
            name = f.name

            locals_to_pass[f"{name}_description_function"] = f.description_function
            locals_to_pass[f"{name}_explanation_function"] = f.explanation_function

            function_definition = f"""
def {name}(**kwargs):
    result = tools.{f.name}(**kwargs)
    function_call_list.append(({name}_description_function(**kwargs), {name}_explanation_function(result)))
    return result
"""
            exec(function_definition, locals_to_pass)

        calls = [c.strip() for c in function_call_str.split(";") if c.strip()]
        for call in calls:
            locals_to_pass["function_call_list"] = function_call_list = []
            result = eval(call, locals_to_pass)
            yield result, function_call_list


class RavenDemo(gr.Blocks):
    def __init__(self, config: DemoConfig) -> None:
        super().__init__(theme=gr.themes.Soft(), css=CSS, title="NexusRaven V2 Demo")

        self.config = config
        self.tools = Tools(config)
        self.functions_helper = FunctionsHelper(self.tools)

        self.raven_client = InferenceClient(
            model=config.raven_endpoint, token=config.hf_token
        )
        self.summary_model_client = InferenceClient(config.summary_model_endpoint)

        self.max_num_steps = 20

        with self:
            gr.HTML(HEADER_HTML)
            with gr.Row():
                gr.Image(
                    "NexusRaven.png",
                    show_label=False,
                    show_share_button=True,
                    min_width=200,
                    scale=1,
                )
                with gr.Column(scale=4, min_width=800):
                    gr.Markdown(INTRO_TEXT, elem_classes="inner-large-font")
                    with gr.Row():
                        examples = [
                            gr.Button(query_name) for query_name in EXAMPLE_QUERIES
                        ]

            user_input = gr.Textbox(
                placeholder="Ask me anything!",
                show_label=False,
                autofocus=True,
            )

            raven_function_call = gr.Code(
                label="πŸ¦β€β¬› NexusRaven V2 13B generated function call",
                language="python",
                interactive=False,
                lines=10,
            )
            with gr.Accordion(
                "Executing plan generated by πŸ¦β€β¬› NexusRaven V2 13B", open=True
            ) as steps_accordion:
                steps = [
                    gr.Textbox(visible=False, show_label=False)
                    for _ in range(self.max_num_steps)
                ]

            with gr.Column():
                initial_relevant_places = self.get_relevant_places([])
                relevant_places = gr.State(initial_relevant_places)
                place_dropdown_choices = self.get_place_dropdown_choices(
                    initial_relevant_places
                )
                places_dropdown = gr.Dropdown(
                    choices=place_dropdown_choices,
                    value=place_dropdown_choices[0],
                    label="Relevant places",
                )
                gmaps_html = gr.HTML(self.get_gmaps_html(initial_relevant_places[0]))

            summary_model_summary = gr.Textbox(
                label="Chat summary",
                interactive=False,
                show_copy_button=True,
                lines=10,
                max_lines=1000,
                autoscroll=False,
                elem_classes="inner-large-font",
            )

            with gr.Accordion("Raven inputs", open=False):
                gr.Textbox(
                    label="Available functions",
                    value="`" + "`, `".join(f.name for f in FUNCTIONS) + "`",
                    interactive=False,
                    show_copy_button=True,
                )
                gr.Textbox(
                    label="Raven prompt",
                    value=self.functions_helper.get_prompt("{query}"),
                    interactive=False,
                    show_copy_button=True,
                    lines=20,
                )

            user_input.submit(
                fn=self.on_submit,
                inputs=[user_input],
                outputs=[
                    user_input,
                    raven_function_call,
                    summary_model_summary,
                    relevant_places,
                    places_dropdown,
                    gmaps_html,
                    steps_accordion,
                    *steps,
                ],
                concurrency_limit=20,  # not a hyperparameter
                api_name=False,
            )

            for i, button in enumerate(examples):
                button.click(
                    fn=EXAMPLE_QUERIES.get,
                    inputs=button,
                    outputs=user_input,
                    api_name=f"button_click_{i}",
                )

            places_dropdown.input(
                fn=self.get_gmaps_html_from_dropdown,
                inputs=[places_dropdown, relevant_places],
                outputs=gmaps_html,
            )

    def on_submit(self, query: str, request: gr.Request):
        def get_returns():
            return (
                user_input,
                raven_function_call,
                summary_model_summary,
                relevant_places,
                places_dropdown,
                gmaps_html,
                steps_accordion,
                *steps,
            )

        user_input = gr.Textbox(interactive=False)
        raven_function_call = ""
        summary_model_summary = ""
        relevant_places = []
        places_dropdown = ""
        gmaps_html = ""
        steps_accordion = gr.Accordion(open=True)
        steps = [gr.Textbox(value="", visible=False) for _ in range(self.max_num_steps)]
        yield get_returns()

        raven_prompt = self.functions_helper.get_prompt(query)
        print(f"{'-' * 80}\nPrompt sent to Raven\n\n{raven_prompt}\n\n{'-' * 80}\n")
        stream = self.raven_client.text_generation(
            raven_prompt, **RAVEN_GENERATION_KWARGS
        )
        for s in stream:
            for c in s:
                raven_function_call += c
                raven_function_call = raven_function_call.removesuffix("<bot_end>")
                yield get_returns()

        r_calls = [c.strip() for c in raven_function_call.split(";") if c.strip()]
        f_r_calls = []
        for r_c in r_calls:
            f_r_call = format_str(r_c.strip(), mode=Mode())
            f_r_calls.append(f_r_call)

        raven_function_call = "; ".join(f_r_calls)

        yield get_returns()

        self._set_client_ip(request)
        function_call_plan = self.functions_helper.get_function_call_plan(
            raven_function_call
        )
        for i, v in enumerate(function_call_plan):
            steps[i] = gr.Textbox(value=f"{i+1}. {v}", visible=True)
            yield get_returns()
            sleep(0.1)

        results_gen = self.functions_helper.run_function_call(raven_function_call)
        results = []
        previous_num_calls = 0
        for result, function_call_list in results_gen:
            results.extend(result)
            for i, (description, explanation) in enumerate(function_call_list):
                i = i + previous_num_calls
                to_stream = f"{i+1}. {description} ..."
                steps[i] = ""
                for c in to_stream:
                    steps[i] += c
                    sleep(0.005)
                    yield get_returns()

                to_stream = "." * randint(0, 5)
                for c in to_stream:
                    steps[i] += c
                    sleep(0.2)
                    yield get_returns()

                to_stream = f" {explanation}"
                for c in to_stream:
                    steps[i] += c
                    sleep(0.005)
                    yield get_returns()

            previous_num_calls += len(function_call_list)

        relevant_places = self.get_relevant_places(results)
        gmaps_html = self.get_gmaps_html(relevant_places[0])
        places_dropdown_choices = self.get_place_dropdown_choices(relevant_places)
        places_dropdown = gr.Dropdown(
            choices=places_dropdown_choices, value=places_dropdown_choices[0]
        )
        steps_accordion = gr.Accordion(open=False)
        yield get_returns()

        while True:
            try:
                summary_model_prompt = self.get_summary_model_prompt(results, query)
                print(
                    f"{'-' * 80}\nPrompt sent to summary model\n\n{summary_model_prompt}\n\n{'-' * 80}\n"
                )
                stream = self.summary_model_client.text_generation(
                    summary_model_prompt, **SUMMARY_MODEL_GENERATION_KWARGS
                )
                for s in stream:
                    for c in s:
                        summary_model_summary += c
                        summary_model_summary = summary_model_summary.lstrip().removesuffix(
                            "<|end_of_turn|>"
                        )
                        yield get_returns()
            except huggingface_hub.inference._text_generation.ValidationError:
                if len(results) > 1:
                    new_length = (3*len(results)) // 4
                    results = results[:new_length]
                    continue
                else:
                    break

            break

        user_input = gr.Textbox(interactive=True)
        yield get_returns()

    def get_summary_model_prompt(self, results: List, query: str) -> None:
        # TODO check what outputs are returned and return them properly
        ALLOWED_KEYS = [
            "author_name",
            "text",
            "for_location",
            "time",
            "author_url",
            "language",
            "original_language",
            "name",
            "opening_hours",
            "rating",
            "user_ratings_total",
            "vicinity",
            "distance",
            "formatted_address",
            "price_level",
            "types",
        ]
        ALLOWED_KEYS = set(ALLOWED_KEYS)

        results_str = ""
        for idx, res in enumerate(results):
            if isinstance(res, str):
                results_str += f"{res}\n"
                continue

            assert isinstance(res, dict)

            item_str = ""
            for key, value in res.items():
                if key not in ALLOWED_KEYS:
                    continue

                key = key.replace("_", " ").capitalize()
                item_str += f"\t{key}: {value}\n"

            results_str += f"Result {idx + 1}\n{item_str}\n"

        current_time = datetime.now().strftime("%b %d, %Y %H:%M:%S")
        current_location = self.tools.get_current_location()

        prompt = SUMMARY_MODEL_PROMPT.format(
            current_location=current_location,
            current_time=current_time,
            results=results_str,
            query=query,
        )
        return prompt

    def get_relevant_places(self, results: List) -> List[Tuple[str, str]]:
        """
        Returns
        -------
        relevant_places: List[Tuple[str, str]]
            A list of tuples, where each tuple is (address, name)

        """
        # We use a dict to preserve ordering, while enforcing uniqueness
        relevant_places = dict()
        for result in results:
            if "formatted_address" in result and "name" in result:
                relevant_places[(result["formatted_address"], result["name"])] = None
            elif "formatted_address" in result and "for_location" in result:
                relevant_places[
                    (result["formatted_address"], result["for_location"])
                ] = None

        relevant_places = list(relevant_places.keys())

        if not relevant_places:
            current_location = self.tools.get_current_location()
            relevant_places.append((current_location, current_location))

        return relevant_places

    def get_place_dropdown_choices(
        self, relevant_places: List[Tuple[str, str]]
    ) -> List[str]:
        return [p[1] for p in relevant_places]

    def get_gmaps_html(self, relevant_place: Tuple[str, str]) -> str:
        address, name = relevant_place
        return GMAPS_EMBED_HTML_TEMPLATE.format(
            address=quote(address), location=quote(name)
        )

    def get_gmaps_html_from_dropdown(
        self, place_name: str, relevant_places: List[Tuple[str, str]]
    ) -> str:
        relevant_place = [p for p in relevant_places if p[1] == place_name][0]
        return self.get_gmaps_html(relevant_place)

    def _set_client_ip(self, request: gr.Request) -> None:
        client_ip = request.client.host
        if (
            "headers" in request.kwargs
            and "x-forwarded-for" in request.kwargs["headers"]
        ):
            x_forwarded_for = request.kwargs["headers"]["x-forwarded-for"]
        else:
            x_forwarded_for = request.headers.get("x-forwarded-for", None)
        if x_forwarded_for:
            client_ip = x_forwarded_for.split(",")[0].strip()

        self.tools.client_ip = client_ip


demo = RavenDemo(DemoConfig.load_from_env())

if __name__ == "__main__":
    demo.launch(
        share=True,
        allowed_paths=["logo.png", "NexusRaven.png"],
        favicon_path="logo.png",
    )