File size: 9,476 Bytes
5321b2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26acc8d
5321b2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
26acc8d
5321b2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5968dd
 
 
 
 
 
 
 
 
 
 
5321b2e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
"""
These are all the tools used in the NexusRaven V2 demo! You can provide any tools you want to Raven.

Nothing in this file is specific to Raven, code/information related to Raven can be found in the `raven_demo.py` file.
"""
from typing import Dict, List, Union

from math import radians, cos, sin, asin, sqrt

import random

import requests

from googlemaps import Client

from config import DemoConfig


class Tools:
    def __init__(self, config: DemoConfig) -> None:
        self.config = config

        self.gmaps = Client(config.gmaps_client_key)
        self.client_ip: str | None = None

    def haversine(self, lon1, lat1, lon2, lat2) -> float:
        """
        Calculate the great circle distance in kilometers between two points on the earth (specified in decimal degrees).
        """
        # convert decimal degrees to radians
        lon1, lat1, lon2, lat2 = map(radians, [lon1, lat1, lon2, lat2])

        # haversine formula
        dlon = lon2 - lon1
        dlat = lat2 - lat1
        a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2
        c = 2 * asin(sqrt(a))
        r = 6371  # Radius of Earth in kilometers. Use 3956 for miles
        return round(c * r, 2)

    def get_current_location(self) -> str:
        """
        Returns the current location. ONLY use this if the user has not provided an explicit location in the query.
        """
        try:
            response = requests.get(f"http://ip-api.com/json/{self.client_ip}")
            location_data = response.json()
            city = location_data["city"]
            region = location_data["regionName"]
            country = location_data["countryCode"]
            return f"{city}, {region}, {country}"
        except:
            return "San Francisco, California, US"

    def sort_results(self, places : list, sort: str, descending: bool = True, first_n : int = None) -> List:
        """
        Sorts the results by either 'distance', 'rating' or 'price'.

        - places (list): The output list from the recommendations.
        - sort (str): If set, sorts by either 'distance' or 'rating' or 'price'. ONLY supports 'distance' or 'rating' or 'price'.
        - descending (bool): If descending is set, setting this boolean to true will sort the results such that the highest values are first.
        - first_n (int): If provided, only retains the first n items in the final sorted list.
        
        When people ask for 'closest' or 'nearest', sort by 'distance'.
        When people ask for 'cheapest' or 'most expensive', sort by 'price'.
        When people ask for 'best' or 'highest rated', sort by rating.
        """

        if not sort:
            return places

        if sort == "price":
            sort = "price_level"

        items = sorted(
            places,
            key=lambda x: x.get(sort, float("inf")),
            reverse=descending,
        )

        if first_n:
            items = items[:first_n]
        return items

    def get_latitude_longitude(self, location: str) -> List:
        """
        Given a city name, this function provides the latitude and longitude of the specific location.

        - location: This can be a city like 'Austin', or a place like 'Austin Airport', etc.
        """
        return self.gmaps.geocode(location)

    def get_distance(self, place_1: str, place_2: str):
        """
        Provides distance between two locations. Do NOT provide latitude longitude, but rather, provide the string descriptions.

        Allows you to provide output from the get_recommendations API.

        - place_1: The first location.
        - place_2: The second location.
        """
        if isinstance(place_1, list) and len(place_1) > 0:
            place_1 = place_1[0]

        if isinstance(place_2, list) and len(place_2) > 0:
            place_2 = place_2[0]

        latlong_1 = self.get_latitude_longitude(place_1)
        latlong_2 = self.get_latitude_longitude(place_2)

        if isinstance(place_1, dict):
            place_1 = place_1["name"]
        if isinstance(place_2, dict):
            place_2 = place_2["name"]

        if len(latlong_1) == 0 or len(latlong_2) == 0:
            return "No place found for the query. Please be more explicit."

        latlong1 = latlong_1[0]["geometry"]["location"]
        latlong2 = latlong_2[0]["geometry"]["location"]

        dist = self.haversine(
            latlong1["lng"], latlong1["lat"], latlong2["lng"], latlong2["lat"]
        )
        dist = dist * 0.621371

        return [f"The distance between {place_1} and {place_2} is {dist:.3f} miles"]

    def get_recommendations(self, topics: list, lat_long: tuple):
        """
        Returns the recommendations for a specific topic that is of interest. Remember, a topic IS NOT an establishment. For establishments, please use another function.

        - topics (list): A list of topics of interest to pull recommendations for. Can be multiple words.
        - lat_long (tuple): The lat_long of interest.
        """
        if len(lat_long) == 0:
            return []

        topic = " ".join(topics)
        latlong = lat_long[0]["geometry"]["location"]
        results = self.gmaps.places(
            query=topic,
            location=latlong,
        )
        return results["results"]

    def find_places_near_location(
        self, type_of_place: list, location: str, radius_miles: int = 50
    ) -> List[Dict]:
        """
        Find places close to a very defined location.

        - type_of_place (list): The type of place. This can be something like 'restaurant' or 'airport'. Make sure that it is a physical location. You can provide multiple words.
        - location (str): The location for the search. This can be a city's name, region, or anything that specifies the location.
        - radius_miles (int): Optional. The max distance from the described location to limit the search. Distance is specified in miles.
        """
        # Get latitude and longitude for the location
        verb_location = location
        geocode_result = self.gmaps.geocode(location)
        if geocode_result:
            latlong = geocode_result[0]["geometry"]["location"]
            location = (latlong["lat"], latlong["lng"])
        else:
            return []

        type_of_place = " ".join(type_of_place)
        # Perform the search using Google Places API
        places_result = self.gmaps.places_nearby(
            location=location, keyword=type_of_place, radius=radius_miles * 1609.34
        )
        places = places_result.get("results", [])
        new_places = []
        for place in places:
            place_location = place["geometry"]["location"]
            distance = self.haversine(
                latlong["lng"],
                latlong["lat"],
                place_location["lng"],
                place_location["lat"],
            )
            if distance == 0.0:
                continue

            place["distance"] = f"{distance} kilometers from {verb_location}"
            new_places.append(place)

        places = new_places
        if len(places) == 0:
            return []

        return self.sort_results(places, sort="distance", descending=False)

    def get_some_reviews(self, place_names: list, location: str = None):
        """
        Given an establishment (or place) name, return reviews about the establishment.

        - place_names (list): The name of the establishment. This should be a physical location name. You can provide multiple inputs.
        - location (str) : The location where the restaurant is located. Optional argument.
        """
        all_reviews = []
        for place_name in place_names:
            if isinstance(place_name, str):
                if location and isinstance(location, list) and len(location) > 0:
                    # Sometimes location will be a list of relevant places from the API.
                    # We just use the first one.
                    location = location[0]
                elif location and isinstance(location, list):
                    # No matching spaces found in the API, len of 0
                    location = None
                if location and isinstance(location, dict):
                    # Weird response from the API, likely a timeout error, disable geoloc
                    location = None
                if location and isinstance(location, str):
                    place_name += " , " + location
            elif isinstance(place_name, dict) and "results" in place_name and "name" in place_name["results"]:
                place_name = place_name["results"]["name"]
            elif isinstance(place_name, dict) and "name" in place_name:
                place_name = place_name["name"]

            search_results = self.gmaps.places(place_name)

            if not search_results.get("results"):
                return []

            # Assuming the first result is the most relevant
            place_id = search_results["results"][0]["place_id"]
            place_details = self.gmaps.place(place_id=place_id)
            reviews = place_details["result"].get("reviews", [])

            for review in reviews:
                review["for_location"] = place_name
                review["formatted_address"] = place_details["result"][
                    "formatted_address"
                ]

            all_reviews.extend(reviews)

        random.shuffle(all_reviews)

        return all_reviews