Aiducation-Edtech-GenAI / student_functions.py
Neurolingua's picture
Update student_functions.py
df50acb verified
raw
history blame
13.3 kB
from gtts import gTTS
import shutil
from selenium import webdriver
from selenium.webdriver.common.by import By
from selenium.webdriver.common.keys import Keys
from selenium.webdriver.support.ui import WebDriverWait
from selenium.webdriver.support import expected_conditions as EC
import easyocr
import json
from youtube_transcript_api import YouTubeTranscriptApi
from youtube_transcript_api.formatters import JSONFormatter
from urllib.parse import urlparse, parse_qs
from pypdf import PdfReader
from ai71 import AI71
import os
AI71_API_KEY = "api71-api-652e5c6c-8edf-41d0-9c34-28522b07bef9"
def extract_text_from_pdf_s(pdf_path):
text = ""
reader = PdfReader(pdf_path)
for page in reader.pages:
text += page.extract_text() + "\n"
generate_speech_from_pdf(text[:len(text) // 2])
return text
def generate_response_from_pdf(query, pdf_text):
response = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are a pdf questioning assistant."},
{"role": "user",
"content": f'''Answer the querry based on the given content.Content:{pdf_text},query:{query}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
return response[:-6].replace("###", '')
def generate_quiz(subject, topic, count, difficult):
quiz_output = ""
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are a teaching assistant."},
{"role": "user",
"content": f'''Generate {count} multiple-choice questions in the subject of {subject} for the topic {topic} for students at a {difficult} level. Ensure the questions are well-diversified and cover various aspects of the topic. Format the questions as follows:
Question: [Question text] [specific concept in a question]
<<o>> [Option1]
<<o>> [Option2]
<<o>> [Option3]
<<o>> [Option4],
Answer: [Option number]'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
quiz_output += chunk.choices[0].delta.content
print("Quiz generated")
return quiz_output
def perform_ocr(image_path):
reader = easyocr.Reader(['en'])
try:
result = reader.readtext(image_path)
extracted_text = ''
for (bbox, text, prob) in result:
extracted_text += text + ' '
return extracted_text.strip()
except Exception as e:
print(f"Error during OCR: {e}")
return ''
def generate_ai_response(query):
ai_response = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are a teaching assistant."},
{"role": "user", "content": f'Assist the user clearly for his questions: {query}.'},
],
stream=True,
):
if chunk.choices[0].delta.content:
ai_response += chunk.choices[0].delta.content
return ai_response.replace('###', '')[:-6]
def generate_project_idea(subject, topic, overview):
string = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are a project building assistant."},
{"role": "user",
"content": f'''Give the different project ideas to build project in {subject} specifically in {topic} for school students. {overview}.'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
string += chunk.choices[0].delta.content
return string
def generate_project_idea_questions(project_idea, query):
project_idea_answer = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are a project building assistant."},
{"role": "user",
"content": f'''Assist me clearly for the following question for the given idea. Idea: {project_idea}. Question: {query}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
project_idea_answer += chunk.choices[0].delta.content
return project_idea_answer
def generate_step_by_step_explanation(query):
explanation = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are the best teaching assistant."},
{"role": "user",
"content": f'''Provide me the clear step by step explanation answer for the following question. Question: {query}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
explanation += chunk.choices[0].delta.content
return explanation.replace('###', '')
def study_plan(subjects, hours, arealag, goal):
plan = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are the best teaching assistant."},
{"role": "user",
"content": f'''Provide me the clear personalised study plan for the subjects {subjects} i lag in areas like {arealag}, im available for {hours} hours per day and my study goal is to {goal}.Provide me like a timetable like day1,day2 for 5 days with concepts,also suggest some books'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
plan += chunk.choices[0].delta.content
return plan.replace('\n', '<br>')
class ConversationBufferMemory:
def __init__(self, memory_key="chat_history"):
self.memory_key = memory_key
self.buffer = []
def add_to_memory(self, interaction):
self.buffer.append(interaction)
def get_memory(self):
return "\n".join([f"Human: {entry['user']}\nAssistant: {entry['assistant']}" for entry in self.buffer])
def spk_msg(user_input, memory):
chat_history = memory.get_memory()
msg = ''
# Construct the message for the API request
messages = [
{"role": "system",
"content": "You are a nice speaker having a conversation with a human.You ask the question the user choose the topic and let user answer.Provide the response only within 2 sentence"},
{"role": "user",
"content": f"Previous conversation:\n{chat_history}\n\nNew human question: {user_input}\nResponse:"}
]
try:
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=messages,
stream=True,
):
if chunk.choices[0].delta.content:
msg += chunk.choices[0].delta.content
except Exception as e:
print(f"An error occurred: {e}")
return msg
def get_first_youtube_video_link(query):
chrome_options = webdriver.ChromeOptions()
chrome_options.add_argument("--headless")
chrome_options.add_argument("--disable-gpu")
chrome_options.add_argument("--disable-extensions")
chrome_options.add_argument("--no-sandbox")
chrome_options.add_argument("--disable-dev-shm-usage")
driver = webdriver.Chrome(options=chrome_options)
try:
driver.get('https://www.youtube.com')
search_box = driver.find_element(By.NAME, 'search_query')
search_box.send_keys(query)
search_box.send_keys(Keys.RETURN)
WebDriverWait(driver, 10).until(
EC.presence_of_element_located((By.CSS_SELECTOR, 'a#video-title')))
first_video = driver.find_element(By.CSS_SELECTOR, 'a#video-title')
first_video_link = first_video.get_attribute('href')
video_title = first_video.get_attribute('title')
return first_video_link, video_title
finally:
driver.quit()
return
def content_translate(text):
translated_content = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are the best teaching assistant."},
{"role": "user", "content": f'''Translate the text to hindi. Text: {text}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
translated_content += chunk.choices[0].delta.content
return translated_content
def get_video_id(url):
"""
Extract the video ID from a YouTube URL.
"""
parsed_url = urlparse(url)
if parsed_url.hostname == 'www.youtube.com' or parsed_url.hostname == 'youtube.com':
video_id = parse_qs(parsed_url.query).get('v')
if video_id:
return video_id[0]
elif parsed_url.hostname == 'youtu.be':
return parsed_url.path[1:]
return None
def extract_captions(video_url):
"""
Extract captions from a YouTube video URL.
"""
video_id = get_video_id(video_url)
if not video_id:
print("Invalid YouTube URL.")
return
try:
transcript = YouTubeTranscriptApi.get_transcript(video_id)
formatter = JSONFormatter()
formatted_transcript = formatter.format_transcript(transcript)
# Save captions to a file
with open(f'youtube_captions.json', 'w') as file:
file.write(formatted_transcript)
print("Captions have been extracted and saved as JSON.")
except Exception as e:
print(f"An error occurred: {e}")
def extract_text_from_json(filename):
# Open and read the JSON file
with open(filename, 'r') as file:
data = json.load(file)
# Extract and print the text fields
texts = [entry['text'] for entry in data]
return texts
def get_simplified_explanation(text):
prompt = (
f"The following is a transcript of a video: \n\n{text}\n\n"
"Please provide a simplified explanation of the video for easy understanding."
)
response = ""
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": prompt},
],
stream=True,
):
if chunk.choices[0].delta.content:
response += chunk.choices[0].delta.content
return response
def summarise_text(url):
extract_captions(url)
texts = extract_text_from_json(r'youtube_captions.json')
os.remove('youtube_captions.json')
first_half = (get_simplified_explanation(texts[:len(texts) // 2]))[:-6]
second_half = (get_simplified_explanation(texts[len(texts) // 2:]))[:-6]
return (first_half + second_half)
def generate_speech_from_pdf(content):
directory = 'speech'
keep_file = 'nil.txt'
# Check if the directory exists
if os.path.isdir(directory):
for filename in os.listdir(directory):
file_path = os.path.join(directory, filename)
# Check if the current file is not the one to keep and is a file
if filename != keep_file and os.path.isfile(file_path):
try:
os.remove(file_path) # Delete the file
print(f"Deleted {file_path}")
except Exception as e:
print(f"Error deleting {file_path}: {e}")
else:
print(f"Directory {directory} does not exist.")
speech = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are a summarising assistant."},
{"role": "user",
"content": f'''Summarise the given content for each chapter for 1 sentence.Content={content}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
speech += chunk.choices[0].delta.content
speech = speech[:-6].replace("###", '')
chapters = speech.split('\n\n')
pdf_audio(chapters[:4])
return
def pdf_audio(chapters):
for i in range(len(chapters)):
tts = gTTS(text=chapters[i], lang='en', slow=False)
tts.save(f'speech/chapter {i + 1}.mp3')
return
def content_translate(text):
translated_content = ''
for chunk in AI71(AI71_API_KEY).chat.completions.create(
model="tiiuae/falcon-180b-chat",
messages=[
{"role": "system", "content": "You are the best teaching assistant."},
{"role": "user", "content": f'''Translate the text to hindi. Text: {text}'''},
],
stream=True,
):
if chunk.choices[0].delta.content:
translated_content += chunk.choices[0].delta.content
return translated_content