|
from ai71 import AI71 |
|
from PyPDF2 import PdfReader |
|
from pdf2image import convert_from_path |
|
import cv2 |
|
import numpy as np |
|
import pytesseract |
|
import subprocess |
|
from PIL import Image |
|
AI71_API_KEY = "api71-api-652e5c6c-8edf-41d0-9c34-28522b07bef9" |
|
|
|
subprocess.run(['apt-get','update']) |
|
subprocess.run(['apt-get','install','-y','tesseract-ocr']) |
|
|
|
def extract_text_from_pdf(pdf_file): |
|
text = "" |
|
reader = PdfReader(pdf_file) |
|
for page in reader.pages: |
|
text += page.extract_text() |
|
return text |
|
|
|
def generate_questions_from_text(text, no_of_questions, marks_per_part, no_parts): |
|
ai71 = AI71(AI71_API_KEY) |
|
messages = [ |
|
{"role": "system", "content": "You are a teaching assistant"}, |
|
{"role": "user", |
|
"content": f"Give your own {no_of_questions} questions under each part for {no_parts} parts with {marks_per_part} marks for each part. Note that all questions must be from the topics of {text}"} |
|
] |
|
|
|
questions = [] |
|
for chunk in ai71.chat.completions.create( |
|
model="tiiuae/falcon-180b-chat", |
|
messages=messages, |
|
stream=True, |
|
): |
|
if chunk.choices[0].delta.content: |
|
questions.append(chunk.choices[0].delta.content) |
|
|
|
return "".join(questions) |
|
|
|
def extract_text_from_image(image_path): |
|
img = Image.open(image_path) |
|
text = pytesseract.image_to_string(img) |
|
return text |
|
|
|
|
|
|
|
|
|
|
|
def evaluate(question, answer, max_marks): |
|
prompt = f"""Questions: {question} |
|
Answer: {answer}. |
|
|
|
|
|
Evaluate above questions one by one(if there are multiple) by provided answers and assign marks out of {max_marks}. No need overall score. Note that as maximum mark increases, the size of the answer must be large enough to get good marks. Give ouput in format below: |
|
assigned marks: |
|
total marks: |
|
Note that you should not display total marks""" |
|
|
|
messages = [ |
|
{"role": "system", "content": "You are an answer evaluator"}, |
|
{"role": "user", "content": prompt} |
|
] |
|
|
|
response_content = "" |
|
for chunk in AI71(AI71_API_KEY).chat.completions.create( |
|
model="tiiuae/falcon-180b-chat", |
|
messages=messages, |
|
stream=True |
|
): |
|
if chunk.choices[0].delta.content: |
|
response_content += chunk.choices[0].delta.content |
|
|
|
return response_content |
|
|
|
def generate_student_report(name, age, cgpa, course, assigned_test, ai_test, interests, difficulty, courses_taken): |
|
prompt = f""" |
|
Name: {name} |
|
Age: {age} |
|
CGPA: {cgpa} |
|
Course: {course} |
|
Assigned Test Score: {assigned_test} |
|
AI generated Test Score: {ai_test} |
|
Interests: {interests} |
|
Difficulty in: {difficulty} |
|
Courses Taken: {courses_taken} |
|
Use the above student data to generate a neat personalized report and suggested teaching methods.""" |
|
|
|
client = AI71(AI71_API_KEY) |
|
|
|
response = client.chat.completions.create( |
|
model="tiiuae/falcon-180B-chat", |
|
messages=[ |
|
{"role": "system", "content": "You are a student report generator."}, |
|
{"role": "user", "content": prompt} |
|
] |
|
) |
|
|
|
report = response.choices[0].message.content if response.choices and response.choices[ |
|
0].message else "No report generated." |
|
print(report) |
|
|
|
return report |
|
def generate_timetable_module(data,hours_per_day,days_per_week,semester_end_date,subjects): |
|
response = AI71(AI71_API_KEY).chat.completions.create( |
|
model="tiiuae/falcon-180B-chat", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": f"Create a timetable starting from Monday based on the following inputs:\n" |
|
f"- Number of hours per day: {hours_per_day}\n" |
|
f"- Number of days per week: {days_per_week}\n" |
|
f"- Semester end date: {semester_end_date}\n" |
|
f"- Subjects: {', '.join(subjects)}\n"} |
|
] |
|
) |
|
|
|
|
|
return( response.choices[0].message.content if response.choices and response.choices[0].message else "No timetable generated.") |
|
|
|
def cluster_topics(academic_topics): |
|
prompt = ( |
|
"Please cluster the following academic topics into their respective subjects such as Mathematics, Physics, etc.: " |
|
+ ", ".join(academic_topics)) |
|
response = "" |
|
for chunk in AI71(AI71_API_KEY).chat.completions.create( |
|
model="tiiuae/falcon-180b-chat", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt}, |
|
], |
|
stream=True, |
|
): |
|
if chunk.choices[0].delta.content: |
|
response += chunk.choices[0].delta.content |
|
return response |
|
|
|
def generate_timetable_weak(clustered_subjects, hours_per_day): |
|
prompt = ( |
|
f"Using the following subjects and topics:\n{clustered_subjects}\n" |
|
f"Generate a special class timetable for {hours_per_day} hours per day.\n" |
|
f"Also provide reference books and methods to teach the slow learners for each subject" |
|
) |
|
response = "" |
|
for chunk in AI71(AI71_API_KEY).chat.completions.create( |
|
model="tiiuae/falcon-180b-chat", |
|
messages=[ |
|
{"role": "system", "content": "You are a helpful assistant."}, |
|
{"role": "user", "content": prompt}, |
|
], |
|
stream=True, |
|
): |
|
if chunk.choices[0].delta.content: |
|
response += chunk.choices[0].delta.content |
|
return response |
|
|