Upload 4 files
Browse files- base_model.pth +3 -0
- model.py +199 -0
- requirements.txt +4 -0
- utils.py +121 -0
base_model.pth
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:065d18e5699492bb121d4011df95c85bf5505eed62225aa843db7c558258b9e2
|
3 |
+
size 201382377
|
model.py
ADDED
@@ -0,0 +1,199 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import torch
|
2 |
+
import torch.nn as nn
|
3 |
+
from torch.nn import functional as F
|
4 |
+
from utils import DEVICE
|
5 |
+
|
6 |
+
|
7 |
+
class AttentionHead(nn.Module):
|
8 |
+
"""
|
9 |
+
One head of the self-attention layer
|
10 |
+
"""
|
11 |
+
|
12 |
+
def __init__(self, head_size, num_embed, block_size, dropout):
|
13 |
+
super().__init__()
|
14 |
+
self.key = nn.Linear(num_embed, head_size, bias=False)
|
15 |
+
self.query = nn.Linear(num_embed, head_size, bias=False)
|
16 |
+
self.value = nn.Linear(num_embed, head_size, bias=False)
|
17 |
+
# tril is a lower triangular matrix. it is not a parameter
|
18 |
+
# of the model, so we assign it to the module using register_buffer
|
19 |
+
self.register_buffer("tril", torch.tril(torch.ones(block_size, block_size)))
|
20 |
+
|
21 |
+
# let's also add dropout
|
22 |
+
self.dropout = nn.Dropout(dropout)
|
23 |
+
|
24 |
+
def forward(self, x):
|
25 |
+
B, T, C = x.shape
|
26 |
+
k = self.key(x)
|
27 |
+
q = self.query(x)
|
28 |
+
# compute attention scores
|
29 |
+
# (B, T, C) @ (B, C, T) -> (B, T, T)
|
30 |
+
wei = q @ k.transpose(-2, -1) * C**-0.5
|
31 |
+
# Tril matrix (lower triagular matrix) is used to mask
|
32 |
+
# future positions (setting them to -inf) so that the
|
33 |
+
# decoder "learns" to predict next words
|
34 |
+
wei = wei.masked_fill(self.tril[:T, :T] == 0, float("-inf")) # (B,T,T)
|
35 |
+
wei = F.softmax(wei, dim=-1) # (B,T,T)
|
36 |
+
wei = self.dropout(wei)
|
37 |
+
# weighted aggregation of the values
|
38 |
+
v = self.value(x)
|
39 |
+
out = wei @ v # (B,T,T) @ (B,T,C) ---> (B,T,C)
|
40 |
+
return out
|
41 |
+
|
42 |
+
|
43 |
+
class MultiHeadAttention(nn.Module):
|
44 |
+
"""
|
45 |
+
Multiple Heads of self-attention in parallel
|
46 |
+
"""
|
47 |
+
|
48 |
+
def __init__(self, num_heads, head_size, num_embed, block_size, dropout):
|
49 |
+
super().__init__()
|
50 |
+
self.heads = nn.ModuleList(
|
51 |
+
[
|
52 |
+
AttentionHead(
|
53 |
+
head_size=head_size,
|
54 |
+
num_embed=num_embed,
|
55 |
+
block_size=block_size,
|
56 |
+
dropout=dropout,
|
57 |
+
)
|
58 |
+
for _ in range(num_heads)
|
59 |
+
]
|
60 |
+
)
|
61 |
+
self.proj = nn.Linear(num_embed, num_embed)
|
62 |
+
self.dropout = nn.Dropout(dropout)
|
63 |
+
|
64 |
+
def forward(self, x):
|
65 |
+
# output of the self-attention
|
66 |
+
out = torch.cat([h(x) for h in self.heads], dim=-1)
|
67 |
+
# apply the linear projection layer
|
68 |
+
out = self.dropout(self.proj(out))
|
69 |
+
return out
|
70 |
+
|
71 |
+
|
72 |
+
class FeedForward(nn.Module):
|
73 |
+
"""
|
74 |
+
A simple linear layer followed by ReLu
|
75 |
+
"""
|
76 |
+
|
77 |
+
def __init__(self, num_embed, dropout):
|
78 |
+
super().__init__()
|
79 |
+
self.net = nn.Sequential(
|
80 |
+
# in the Attention is All You Need paper
|
81 |
+
# authors are using the size of the ffwd layer 2048
|
82 |
+
# and the output of the model is 512
|
83 |
+
# so we apply the same factor of 4
|
84 |
+
nn.Linear(num_embed, 4 * num_embed),
|
85 |
+
nn.ReLU(),
|
86 |
+
# apply the linear projection layer
|
87 |
+
nn.Linear(4 * num_embed, num_embed),
|
88 |
+
nn.Dropout(dropout),
|
89 |
+
)
|
90 |
+
|
91 |
+
def forward(self, x):
|
92 |
+
return self.net(x)
|
93 |
+
|
94 |
+
|
95 |
+
class TransformerBlock(nn.Module):
|
96 |
+
"""
|
97 |
+
This calss will group together MultiHead Attention and
|
98 |
+
FeedForward NN, so that we can copy it in Transformer
|
99 |
+
"""
|
100 |
+
|
101 |
+
def __init__(self, num_heads, block_size, num_embed, dropout):
|
102 |
+
super().__init__()
|
103 |
+
head_size = num_embed // num_heads
|
104 |
+
self.sa = MultiHeadAttention(
|
105 |
+
num_heads=num_heads,
|
106 |
+
head_size=head_size,
|
107 |
+
num_embed=num_embed,
|
108 |
+
block_size=block_size,
|
109 |
+
dropout=dropout,
|
110 |
+
)
|
111 |
+
self.ffwd = FeedForward(num_embed=num_embed, dropout=dropout)
|
112 |
+
# add the layer normalization
|
113 |
+
self.ln1 = nn.LayerNorm(num_embed)
|
114 |
+
self.ln2 = nn.LayerNorm(num_embed)
|
115 |
+
|
116 |
+
def forward(self, x):
|
117 |
+
# "x +" is the skip (or residual) connection
|
118 |
+
# it helps with optimization
|
119 |
+
# also we apply layer normalization before self-attention
|
120 |
+
# and feed-forward (a reshufle from original paper)
|
121 |
+
x = x + self.sa(self.ln1(x))
|
122 |
+
x = x + self.ffwd(self.ln2(x))
|
123 |
+
return x
|
124 |
+
|
125 |
+
|
126 |
+
class Transformer(nn.Module):
|
127 |
+
def __init__(self, **kwargs):
|
128 |
+
super().__init__()
|
129 |
+
# a simple lookup table that stores embeddings of a fixed dictionary and size
|
130 |
+
# each token directly reads off the logits for the next token from a lookup table
|
131 |
+
# see more: https://pytorch.org/docs/stable/generated/torch.nn.Embedding.html
|
132 |
+
self.vocab_size = kwargs.get("vocab_size", 100)
|
133 |
+
self.num_embed = kwargs.get("num_embed", 32)
|
134 |
+
self.block_size = kwargs.get("block_size", 8)
|
135 |
+
self.num_heads = kwargs.get("num_heads", 4)
|
136 |
+
self.num_layers = kwargs.get("num_layers", 4)
|
137 |
+
self.dropout = kwargs.get("dropout", 0.2)
|
138 |
+
# each token reads the logits for the next token from a lookup table
|
139 |
+
self.token_embedding_table = nn.Embedding(self.vocab_size, self.num_embed)
|
140 |
+
# each position from 0 to block_size-1 will get its embedding
|
141 |
+
self.position_embedding_table = nn.Embedding(self.block_size, self.num_embed)
|
142 |
+
self.blocks = nn.Sequential(
|
143 |
+
*[
|
144 |
+
TransformerBlock(
|
145 |
+
num_heads=self.num_heads,
|
146 |
+
block_size=self.block_size,
|
147 |
+
num_embed=self.num_embed,
|
148 |
+
dropout=self.dropout,
|
149 |
+
)
|
150 |
+
for _ in range(self.num_layers)
|
151 |
+
]
|
152 |
+
)
|
153 |
+
# we add the layer norm before the Linear layer
|
154 |
+
self.ln_f = nn.LayerNorm(self.num_embed)
|
155 |
+
self.lm_head = nn.Linear(self.num_embed, self.vocab_size)
|
156 |
+
|
157 |
+
def forward(self, idx, targets=None):
|
158 |
+
B, T = idx.shape
|
159 |
+
# idx and targets are (B,T) tensor of integers
|
160 |
+
# the token_emb is (B, T, C), C = NUM_EMBED
|
161 |
+
token_emb = self.token_embedding_table(idx)
|
162 |
+
# (T, C)
|
163 |
+
posit_emb = self.position_embedding_table(torch.arange(T, device=DEVICE))
|
164 |
+
|
165 |
+
x = token_emb + posit_emb
|
166 |
+
# apply one head of self-attention
|
167 |
+
x = self.blocks(x)
|
168 |
+
# (B, T, vocab_size)
|
169 |
+
logits = self.lm_head(x)
|
170 |
+
# compute the loss
|
171 |
+
if targets != None:
|
172 |
+
# cross_entropy accepts inputs in a (batch_size, num_classes)
|
173 |
+
# so we need to reformat our logits dimensions to
|
174 |
+
# (batch_size * time, dim_vocabulary), time = block_size
|
175 |
+
B, T, C = logits.shape
|
176 |
+
logits = torch.reshape(logits, (B * T, C))
|
177 |
+
targets = torch.reshape(targets, (B * T,))
|
178 |
+
loss = F.cross_entropy(logits, targets)
|
179 |
+
else:
|
180 |
+
loss = None
|
181 |
+
return logits, loss
|
182 |
+
|
183 |
+
def generate(self, idx: torch.Tensor, max_new_tokens: int, block_size: int):
|
184 |
+
# idx is (B, T) array of indices in the current context
|
185 |
+
for _ in range(max_new_tokens):
|
186 |
+
# crop the context too the last block_size tokens
|
187 |
+
# because tokens don't communicate between blocks
|
188 |
+
idx_crop = idx[:, -block_size:]
|
189 |
+
# get the predictions
|
190 |
+
logits, loss = self.forward(idx_crop)
|
191 |
+
# focus only on the last time step
|
192 |
+
logits = logits[:, -1, :] # becomes (B, C)
|
193 |
+
# apply softmax to get probabilities
|
194 |
+
probs = F.softmax(logits, dim=-1) # (B, C)
|
195 |
+
# sample from the distribution with probabilities probs
|
196 |
+
idx_next = torch.multinomial(probs, num_samples=1) # (B, 1)
|
197 |
+
# append sampled index to the running sequence
|
198 |
+
idx = torch.cat((idx, idx_next), dim=1) # (B, T+1)
|
199 |
+
return idx
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# python>=3.9 # This is a recommended python version. It cannot be installed by pip. (???)
|
2 |
+
torch>=1.13.1
|
3 |
+
transformers>=4.25.1
|
4 |
+
numpy
|
utils.py
ADDED
@@ -0,0 +1,121 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
import torch
|
3 |
+
from datetime import datetime
|
4 |
+
|
5 |
+
# hyperparameters
|
6 |
+
BATCH_SIZE = 32 # how many independent sequences will we process in parallel?
|
7 |
+
BLOCK_SIZE = 64 # what is the maximum context length for predictions?
|
8 |
+
MAX_ITER = 500 # number of training iterations
|
9 |
+
EVAL_INTER = 1
|
10 |
+
LEARNING_RATE = 3e-4
|
11 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
12 |
+
NUM_HEAD = 6
|
13 |
+
NUM_EMBED = NUM_HEAD * 128
|
14 |
+
NUM_LAYER = 6
|
15 |
+
DROPOUT = 0.2
|
16 |
+
|
17 |
+
def encode(text_seq: str, tokenizer: any) -> torch.Tensor:
|
18 |
+
"""
|
19 |
+
Function to encode input text using a pre-trained tokenizer and vectorized lookups
|
20 |
+
"""
|
21 |
+
# tokenize the input text
|
22 |
+
tokens = tokenizer.tokenize(text_seq)
|
23 |
+
# convert the tokens to their corresponding ids
|
24 |
+
token_indices = tokenizer.convert_tokens_to_ids(tokens)
|
25 |
+
token_indices = torch.tensor(token_indices, dtype=torch.long)
|
26 |
+
return token_indices
|
27 |
+
|
28 |
+
|
29 |
+
def decode(enc_sec: torch.Tensor, tokenizer: any) -> str:
|
30 |
+
"""
|
31 |
+
Function to decode a sequence of token indices back to a string
|
32 |
+
"""
|
33 |
+
# convert the indices to a list
|
34 |
+
enc_sec = enc_sec.tolist()
|
35 |
+
# decode the indices to a string
|
36 |
+
text = tokenizer.decode(enc_sec)
|
37 |
+
return text
|
38 |
+
|
39 |
+
|
40 |
+
def get_batch(data: list[str], block_size: int, batch_size: int):
|
41 |
+
"""
|
42 |
+
This is a simple function to create batches of data.
|
43 |
+
GPUs allow for parallel processing we can feed multiple chunks at once
|
44 |
+
so that's why we would need batches - how many independant sequences
|
45 |
+
will we process in parallel.
|
46 |
+
|
47 |
+
Parameters:
|
48 |
+
data: list[str]: data to take batch from
|
49 |
+
block_size (int): size of the text that is proccessed at once
|
50 |
+
batch_size (int): number of sequences to process in parallel
|
51 |
+
|
52 |
+
Returns:
|
53 |
+
x, y: a tuple with token sequence and token target
|
54 |
+
"""
|
55 |
+
ix = torch.randint(len(data) - block_size, (batch_size,))
|
56 |
+
# we stack batch_size rows of sentences
|
57 |
+
# so x and y are the matrices with rows_num=batch_size
|
58 |
+
# and col_num=block_size
|
59 |
+
x = torch.stack([data[i : i + block_size] for i in ix])
|
60 |
+
# y is x shifted one position right - because we predict
|
61 |
+
# word in y having all the previous words as context
|
62 |
+
y = torch.stack([data[i + 1 : i + block_size + 1] for i in ix])
|
63 |
+
x, y = x.to(DEVICE), y.to(DEVICE)
|
64 |
+
return x, y
|
65 |
+
|
66 |
+
|
67 |
+
@torch.no_grad()
|
68 |
+
def estimate_loss(
|
69 |
+
data: list[str],
|
70 |
+
model: torch.nn.Module,
|
71 |
+
block_size: int,
|
72 |
+
batch_size: int,
|
73 |
+
eval_iters: int = 10,
|
74 |
+
):
|
75 |
+
out = {}
|
76 |
+
model.eval()
|
77 |
+
losses = torch.zeros(eval_iters)
|
78 |
+
for k in range(eval_iters):
|
79 |
+
X, Y = get_batch(data=data, block_size=block_size, batch_size=batch_size)
|
80 |
+
logits, loss = model.forward(X, Y)
|
81 |
+
losses[k] = loss.item()
|
82 |
+
out = losses.mean()
|
83 |
+
model.train()
|
84 |
+
return out
|
85 |
+
|
86 |
+
|
87 |
+
def load_model_from_checkpoint(
|
88 |
+
model_class: torch.nn.Module,
|
89 |
+
path_to_checkpoint: str = "checkpoints/state_dict_model.pt",
|
90 |
+
**kwargs: dict,
|
91 |
+
) -> torch.nn.Module:
|
92 |
+
try:
|
93 |
+
state_dict = torch.load(path_to_checkpoint)
|
94 |
+
print("Successfully loaded model from the checkpoint")
|
95 |
+
except Exception as e:
|
96 |
+
print(f"Error loading the model from the checkpoint. {e}")
|
97 |
+
|
98 |
+
model = model_class(**kwargs)
|
99 |
+
# load the state_dict into the model
|
100 |
+
model.load_state_dict(state_dict)
|
101 |
+
return model
|
102 |
+
|
103 |
+
|
104 |
+
def save_model_to_chekpoint(
|
105 |
+
model: torch.nn.Module, path_to_checkpoint: str = "checkpoints", epoch: int = 0
|
106 |
+
):
|
107 |
+
# check if path exists, otherwise create it
|
108 |
+
if not os.path.exists(path_to_checkpoint):
|
109 |
+
os.makedirs(path_to_checkpoint)
|
110 |
+
|
111 |
+
# datetime object containing current date and time
|
112 |
+
now = datetime.now()
|
113 |
+
# dd/mm/YY H:M:S
|
114 |
+
dt_string = now.strftime("%d.%m.%Y_%H:%M:%S")
|
115 |
+
checkpoint_name = "checkpoint_epoch-" + str(epoch) + "_" + dt_string + ".pt"
|
116 |
+
full_path = os.path.join(path_to_checkpoint, checkpoint_name)
|
117 |
+
try:
|
118 |
+
torch.save(model.state_dict(), full_path)
|
119 |
+
print("Successfully saved the model to {}".format(full_path))
|
120 |
+
except Exception as e:
|
121 |
+
print(f"Error saving the model to checkpoint. {e}")
|