Spaces:
Build error
Build error
File size: 34,290 Bytes
eaa1d55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 |
from core import full_inference_program
import sys, os
import gradio as gr
import regex as re
from assets.i18n.i18n import I18nAuto
import torch
import shutil
import unicodedata
i18n = I18nAuto()
now_dir = os.getcwd()
sys.path.append(now_dir)
model_root = os.path.join(now_dir, "logs")
audio_root = os.path.join(now_dir, "audio_files", "original_files")
model_root_relative = os.path.relpath(model_root, now_dir)
audio_root_relative = os.path.relpath(audio_root, now_dir)
sup_audioext = {
"wav",
"mp3",
"flac",
"ogg",
"opus",
"m4a",
"mp4",
"aac",
"alac",
"wma",
"aiff",
"webm",
"ac3",
}
names = [
os.path.join(root, file)
for root, _, files in os.walk(model_root_relative, topdown=False)
for file in files
if (
file.endswith((".pth", ".onnx"))
and not (file.startswith("G_") or file.startswith("D_"))
)
]
indexes_list = [
os.path.join(root, name)
for root, _, files in os.walk(model_root_relative, topdown=False)
for name in files
if name.endswith(".index") and "trained" not in name
]
audio_paths = [
os.path.join(root, name)
for root, _, files in os.walk(audio_root_relative, topdown=False)
for name in files
if name.endswith(tuple(sup_audioext))
and root == audio_root_relative
and "_output" not in name
]
vocals_model_names = [
"Mel-Roformer by KimberleyJSN",
"BS-Roformer by ViperX",
"MDX23C",
]
karaoke_models_names = [
"Mel-Roformer Karaoke by aufr33 and viperx",
"UVR-BVE",
]
denoise_models_names = [
"Mel-Roformer Denoise Normal by aufr33",
"Mel-Roformer Denoise Aggressive by aufr33",
"UVR Denoise",
]
dereverb_models_names = [
"MDX23C DeReverb by aufr33 and jarredou",
"UVR-Deecho-Dereverb",
"MDX Reverb HQ by FoxJoy",
"BS-Roformer Dereverb by anvuew",
]
deeecho_models_names = ["UVR-Deecho-Normal", "UVR-Deecho-Aggressive"]
def get_indexes():
indexes_list = [
os.path.join(dirpath, filename)
for dirpath, _, filenames in os.walk(model_root_relative)
for filename in filenames
if filename.endswith(".index") and "trained" not in filename
]
return indexes_list if indexes_list else ""
def match_index(model_file_value):
if model_file_value:
model_folder = os.path.dirname(model_file_value)
model_name = os.path.basename(model_file_value)
index_files = get_indexes()
pattern = r"^(.*?)_"
match = re.match(pattern, model_name)
for index_file in index_files:
if os.path.dirname(index_file) == model_folder:
return index_file
elif match and match.group(1) in os.path.basename(index_file):
return index_file
elif model_name in os.path.basename(index_file):
return index_file
return ""
def output_path_fn(input_audio_path):
original_name_without_extension = os.path.basename(input_audio_path).rsplit(".", 1)[
0
]
new_name = original_name_without_extension + "_output.wav"
output_path = os.path.join(os.path.dirname(input_audio_path), new_name)
return output_path
def get_number_of_gpus():
if torch.cuda.is_available():
num_gpus = torch.cuda.device_count()
return "-".join(map(str, range(num_gpus)))
else:
return "-"
def max_vram_gpu(gpu):
if torch.cuda.is_available():
gpu_properties = torch.cuda.get_device_properties(gpu)
total_memory_gb = round(gpu_properties.total_memory / 1024 / 1024 / 1024)
return total_memory_gb / 2
else:
return "0"
def format_title(title):
formatted_title = (
unicodedata.normalize("NFKD", title).encode("ascii", "ignore").decode("utf-8")
)
formatted_title = re.sub(r"[\u2500-\u257F]+", "", formatted_title)
formatted_title = re.sub(r"[^\w\s.-]", "", formatted_title)
formatted_title = re.sub(r"\s+", "_", formatted_title)
return formatted_title
def save_to_wav(upload_audio):
file_path = upload_audio
formated_name = format_title(os.path.basename(file_path))
target_path = os.path.join(audio_root_relative, formated_name)
if os.path.exists(target_path):
os.remove(target_path)
os.makedirs(os.path.dirname(target_path), exist_ok=True)
shutil.copy(file_path, target_path)
return target_path, output_path_fn(target_path)
def delete_outputs():
gr.Info(f"Outputs cleared!")
for root, _, files in os.walk(audio_root_relative, topdown=False):
for name in files:
if name.endswith(tuple(sup_audioext)) and name.__contains__("_output"):
os.remove(os.path.join(root, name))
def change_choices():
names = [
os.path.join(root, file)
for root, _, files in os.walk(model_root_relative, topdown=False)
for file in files
if (
file.endswith((".pth", ".onnx"))
and not (file.startswith("G_") or file.startswith("D_"))
)
]
indexes_list = [
os.path.join(root, name)
for root, _, files in os.walk(model_root_relative, topdown=False)
for name in files
if name.endswith(".index") and "trained" not in name
]
audio_paths = [
os.path.join(root, name)
for root, _, files in os.walk(audio_root_relative, topdown=False)
for name in files
if name.endswith(tuple(sup_audioext))
and root == audio_root_relative
and "_output" not in name
]
return (
{"choices": sorted(names), "__type__": "update"},
{"choices": sorted(indexes_list), "__type__": "update"},
{"choices": sorted(audio_paths), "__type__": "update"},
)
def full_inference_tab():
default_weight = names[0] if names else None
with gr.Row():
with gr.Row():
model_file = gr.Dropdown(
label=i18n("Voice Model"),
info=i18n("Select the voice model to use for the conversion."),
choices=sorted(names, key=lambda path: os.path.getsize(path)),
interactive=True,
value=default_weight,
allow_custom_value=True,
)
index_file = gr.Dropdown(
label=i18n("Index File"),
info=i18n("Select the index file to use for the conversion."),
choices=get_indexes(),
value=match_index(default_weight) if default_weight else "",
interactive=True,
allow_custom_value=True,
)
with gr.Column():
refresh_button = gr.Button(i18n("Refresh"))
unload_button = gr.Button(i18n("Unload Voice"))
unload_button.click(
fn=lambda: (
{"value": "", "__type__": "update"},
{"value": "", "__type__": "update"},
),
inputs=[],
outputs=[model_file, index_file],
)
model_file.select(
fn=lambda model_file_value: match_index(model_file_value),
inputs=[model_file],
outputs=[index_file],
)
with gr.Tab(i18n("Single")):
with gr.Column():
upload_audio = gr.Audio(
label=i18n("Upload Audio"),
type="filepath",
editable=False,
sources="upload",
)
with gr.Row():
audio = gr.Dropdown(
label=i18n("Select Audio"),
info=i18n("Select the audio to convert."),
choices=sorted(audio_paths),
value=audio_paths[0] if audio_paths else "",
interactive=True,
allow_custom_value=True,
)
with gr.Accordion(i18n("Advanced Settings"), open=False):
with gr.Accordion(i18n("RVC Settings"), open=False):
output_path = gr.Textbox(
label=i18n("Output Path"),
placeholder=i18n("Enter output path"),
info=i18n(
"The path where the output audio will be saved, by default in audio_files/rvc/output.wav"
),
value=os.path.join(now_dir, "audio_files", "rvc"),
interactive=False,
visible=False,
)
infer_backing_vocals = gr.Checkbox(
label=i18n("Infer Backing Vocals"),
info=i18n("Infer the bakcing vocals too."),
visible=True,
value=False,
interactive=True,
)
with gr.Row():
infer_backing_vocals_model = gr.Dropdown(
label=i18n("Backing Vocals Model"),
info=i18n(
"Select the backing vocals model to use for the conversion."
),
choices=sorted(names, key=lambda path: os.path.getsize(path)),
interactive=True,
value=default_weight,
visible=False,
allow_custom_value=False,
)
infer_backing_vocals_index = gr.Dropdown(
label=i18n("Backing Vocals Index File"),
info=i18n(
"Select the backing vocals index file to use for the conversion."
),
choices=get_indexes(),
value=match_index(default_weight) if default_weight else "",
interactive=True,
visible=False,
allow_custom_value=True,
)
with gr.Column():
refresh_button_infer_backing_vocals = gr.Button(
i18n("Refresh"),
visible=False,
)
unload_button_infer_backing_vocals = gr.Button(
i18n("Unload Voice"),
visible=False,
)
unload_button_infer_backing_vocals.click(
fn=lambda: (
{"value": "", "__type__": "update"},
{"value": "", "__type__": "update"},
),
inputs=[],
outputs=[
infer_backing_vocals_model,
infer_backing_vocals_index,
],
)
infer_backing_vocals_model.select(
fn=lambda model_file_value: match_index(model_file_value),
inputs=[infer_backing_vocals_model],
outputs=[infer_backing_vocals_index],
)
with gr.Accordion(
i18n("RVC Settings for Backing vocals"), open=False, visible=False
) as back_rvc_settings:
export_format_rvc_back = gr.Radio(
label=i18n("Export Format"),
info=i18n("Select the format to export the audio."),
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"],
value="FLAC",
interactive=True,
visible=False,
)
split_audio_back = gr.Checkbox(
label=i18n("Split Audio"),
info=i18n(
"Split the audio into chunks for inference to obtain better results in some cases."
),
visible=True,
value=False,
interactive=True,
)
pitch_extract_back = gr.Radio(
label=i18n("Pitch Extractor"),
info=i18n("Pitch extract Algorith."),
choices=["rmvpe", "crepe", "crepe-tiny", "fcpe"],
value="rmvpe",
interactive=True,
)
hop_length_back = gr.Slider(
label=i18n("Hop Length"),
info=i18n("Hop length for pitch extraction."),
minimum=1,
maximum=512,
step=1,
value=64,
visible=False,
)
embedder_model_back = gr.Radio(
label=i18n("Embedder Model"),
info=i18n("Model used for learning speaker embedding."),
choices=[
"contentvec",
"chinese-hubert-base",
"japanese-hubert-base",
"korean-hubert-base",
],
value="contentvec",
interactive=True,
)
autotune_back = gr.Checkbox(
label=i18n("Autotune"),
info=i18n(
"Apply a soft autotune to your inferences, recommended for singing conversions."
),
visible=True,
value=False,
interactive=True,
)
pitch_back = gr.Slider(
label=i18n("Pitch"),
info=i18n("Adjust the pitch of the audio."),
minimum=-12,
maximum=12,
step=1,
value=0,
interactive=True,
)
filter_radius_back = gr.Slider(
minimum=0,
maximum=7,
label=i18n("Filter Radius"),
info=i18n(
"If the number is greater than or equal to three, employing median filtering on the collected tone results has the potential to decrease respiration."
),
value=3,
step=1,
interactive=True,
)
index_rate_back = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Search Feature Ratio"),
info=i18n(
"Influence exerted by the index file; a higher value corresponds to greater influence. However, opting for lower values can help mitigate artifacts present in the audio."
),
value=0.75,
interactive=True,
)
rms_mix_rate_back = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Volume Envelope"),
info=i18n(
"Substitute or blend with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is employed."
),
value=0.25,
interactive=True,
)
protect_back = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n("Protect Voiceless Consonants"),
info=i18n(
"Safeguard distinct consonants and breathing sounds to prevent electro-acoustic tearing and other artifacts. Pulling the parameter to its maximum value of 0.5 offers comprehensive protection. However, reducing this value might decrease the extent of protection while potentially mitigating the indexing effect."
),
value=0.33,
interactive=True,
)
clear_outputs_infer = gr.Button(
i18n("Clear Outputs (Deletes all audios in assets/audios)")
)
export_format_rvc = gr.Radio(
label=i18n("Export Format"),
info=i18n("Select the format to export the audio."),
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"],
value="FLAC",
interactive=True,
visible=False,
)
split_audio = gr.Checkbox(
label=i18n("Split Audio"),
info=i18n(
"Split the audio into chunks for inference to obtain better results in some cases."
),
visible=True,
value=False,
interactive=True,
)
pitch_extract = gr.Radio(
label=i18n("Pitch Extractor"),
info=i18n("Pitch extract Algorith."),
choices=["rmvpe", "crepe", "crepe-tiny", "fcpe"],
value="rmvpe",
interactive=True,
)
hop_length = gr.Slider(
label=i18n("Hop Length"),
info=i18n("Hop length for pitch extraction."),
minimum=1,
maximum=512,
step=1,
value=64,
visible=False,
)
embedder_model = gr.Radio(
label=i18n("Embedder Model"),
info=i18n("Model used for learning speaker embedding."),
choices=[
"contentvec",
"chinese-hubert-base",
"japanese-hubert-base",
"korean-hubert-base",
],
value="contentvec",
interactive=True,
)
autotune = gr.Checkbox(
label=i18n("Autotune"),
info=i18n(
"Apply a soft autotune to your inferences, recommended for singing conversions."
),
visible=True,
value=False,
interactive=True,
)
pitch = gr.Slider(
label=i18n("Pitch"),
info=i18n("Adjust the pitch of the audio."),
minimum=-12,
maximum=12,
step=1,
value=0,
interactive=True,
)
filter_radius = gr.Slider(
minimum=0,
maximum=7,
label=i18n("Filter Radius"),
info=i18n(
"If the number is greater than or equal to three, employing median filtering on the collected tone results has the potential to decrease respiration."
),
value=3,
step=1,
interactive=True,
)
index_rate = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Search Feature Ratio"),
info=i18n(
"Influence exerted by the index file; a higher value corresponds to greater influence. However, opting for lower values can help mitigate artifacts present in the audio."
),
value=0.75,
interactive=True,
)
rms_mix_rate = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Volume Envelope"),
info=i18n(
"Substitute or blend with the volume envelope of the output. The closer the ratio is to 1, the more the output envelope is employed."
),
value=0.25,
interactive=True,
)
protect = gr.Slider(
minimum=0,
maximum=0.5,
label=i18n("Protect Voiceless Consonants"),
info=i18n(
"Safeguard distinct consonants and breathing sounds to prevent electro-acoustic tearing and other artifacts. Pulling the parameter to its maximum value of 0.5 offers comprehensive protection. However, reducing this value might decrease the extent of protection while potentially mitigating the indexing effect."
),
value=0.33,
interactive=True,
)
with gr.Accordion(i18n("Audio Separation Settings"), open=False):
use_tta = gr.Checkbox(
label=i18n("Use TTA"),
info=i18n("Use Test Time Augmentation."),
visible=True,
value=False,
interactive=True,
)
batch_size = gr.Slider(
minimum=1,
maximum=24,
step=1,
label=i18n("Batch Size"),
info=i18n("Set the batch size for the separation."),
value=1,
interactive=True,
)
vocal_model = gr.Dropdown(
label=i18n("Vocals Model"),
info=i18n("Select the vocals model to use for the separation."),
choices=sorted(vocals_model_names),
interactive=True,
value="Mel-Roformer by KimberleyJSN",
allow_custom_value=False,
)
karaoke_model = gr.Dropdown(
label=i18n("Karaoke Model"),
info=i18n("Select the karaoke model to use for the separation."),
choices=sorted(karaoke_models_names),
interactive=True,
value="Mel-Roformer Karaoke by aufr33 and viperx",
allow_custom_value=False,
)
dereverb_model = gr.Dropdown(
label=i18n("Dereverb Model"),
info=i18n("Select the dereverb model to use for the separation."),
choices=sorted(dereverb_models_names),
interactive=True,
value="UVR-Deecho-Dereverb",
allow_custom_value=False,
)
deecho = gr.Checkbox(
label=i18n("Deeecho"),
info=i18n("Apply deeecho to the audio."),
visible=True,
value=True,
interactive=True,
)
deeecho_model = gr.Dropdown(
label=i18n("Deeecho Model"),
info=i18n("Select the deeecho model to use for the separation."),
choices=sorted(deeecho_models_names),
interactive=True,
value="UVR-Deecho-Normal",
allow_custom_value=False,
)
denoise = gr.Checkbox(
label=i18n("Denoise"),
info=i18n("Apply denoise to the audio."),
visible=True,
value=False,
interactive=True,
)
denoise_model = gr.Dropdown(
label=i18n("Denoise Model"),
info=i18n("Select the denoise model to use for the separation."),
choices=sorted(denoise_models_names),
interactive=True,
value="Mel-Roformer Denoise Normal by aufr33",
allow_custom_value=False,
visible=False,
)
with gr.Accordion(i18n("Audio post-process Settings"), open=False):
change_inst_pitch = gr.Slider(
label=i18n("Change Instrumental Pitch"),
info=i18n("Change the pitch of the instrumental."),
minimum=-12,
maximum=12,
step=1,
value=0,
interactive=True,
)
delete_audios = gr.Checkbox(
label=i18n("Delete Audios"),
info=i18n("Delete the audios after the conversion."),
visible=True,
value=True,
interactive=True,
)
reverb = gr.Checkbox(
label=i18n("Reverb"),
info=i18n("Apply reverb to the audio."),
visible=True,
value=False,
interactive=True,
)
reverb_room_size = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Reverb Room Size"),
info=i18n("Set the room size of the reverb."),
value=0.5,
interactive=True,
visible=False,
)
reverb_damping = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Reverb Damping"),
info=i18n("Set the damping of the reverb."),
value=0.5,
interactive=True,
visible=False,
)
reverb_wet_gain = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Reverb Wet Gain"),
info=i18n("Set the wet gain of the reverb."),
value=0.33,
interactive=True,
visible=False,
)
reverb_dry_gain = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Reverb Dry Gain"),
info=i18n("Set the dry gain of the reverb."),
value=0.4,
interactive=True,
visible=False,
)
reverb_width = gr.Slider(
minimum=0,
maximum=1,
label=i18n("Reverb Width"),
info=i18n("Set the width of the reverb."),
value=1.0,
interactive=True,
visible=False,
)
vocals_volume = gr.Slider(
label=i18n("Vocals Volume"),
info=i18n("Adjust the volume of the vocals."),
minimum=-10,
maximum=0,
step=1,
value=-3,
interactive=True,
)
instrumentals_volume = gr.Slider(
label=i18n("Instrumentals Volume"),
info=i18n("Adjust the volume of the Instrumentals."),
minimum=-10,
maximum=0,
step=1,
value=-3,
interactive=True,
)
backing_vocals_volume = gr.Slider(
label=i18n("Backing Vocals Volume"),
info=i18n("Adjust the volume of the backing vocals."),
minimum=-10,
maximum=0,
step=1,
value=-3,
interactive=True,
)
export_format_final = gr.Radio(
label=i18n("Export Format"),
info=i18n("Select the format to export the audio."),
choices=["WAV", "MP3", "FLAC", "OGG", "M4A"],
value="FLAC",
interactive=True,
)
with gr.Accordion(i18n("Device Settings"), open=False):
devices = gr.Textbox(
label=i18n("Device"),
info=i18n(
"Select the device to use for the conversion. 0 to ∞ separated by - and for CPU leave only an -"
),
value=get_number_of_gpus(),
interactive=True,
)
with gr.Row():
convert_button = gr.Button(i18n("Convert"))
with gr.Row():
vc_output1 = gr.Textbox(
label=i18n("Output Information"),
info=i18n("The output information will be displayed here."),
)
vc_output2 = gr.Audio(label=i18n("Export Audio"))
def update_dropdown_visibility(checkbox):
return gr.update(visible=checkbox)
def update_reverb_sliders_visibility(reverb_checked):
return {
reverb_room_size: gr.update(visible=reverb_checked),
reverb_damping: gr.update(visible=reverb_checked),
reverb_wet_gain: gr.update(visible=reverb_checked),
reverb_dry_gain: gr.update(visible=reverb_checked),
reverb_width: gr.update(visible=reverb_checked),
}
def update_visibility_infer_backing(infer_backing_vocals):
visible = infer_backing_vocals
return (
{"visible": visible, "__type__": "update"},
{"visible": visible, "__type__": "update"},
{"visible": visible, "__type__": "update"},
{"visible": visible, "__type__": "update"},
{"visible": visible, "__type__": "update"},
)
def update_hop_length_visibility(pitch_extract_value):
return gr.update(visible=pitch_extract_value in ["crepe", "crepe-tiny"])
refresh_button.click(
fn=change_choices,
inputs=[],
outputs=[model_file, index_file, audio],
)
refresh_button_infer_backing_vocals.click(
fn=change_choices,
inputs=[],
outputs=[infer_backing_vocals_model, infer_backing_vocals_index],
)
upload_audio.upload(
fn=save_to_wav,
inputs=[upload_audio],
outputs=[audio, output_path],
)
clear_outputs_infer.click(
fn=delete_outputs,
inputs=[],
outputs=[],
)
convert_button.click(
full_inference_program,
inputs=[
model_file,
index_file,
audio,
output_path,
export_format_rvc,
split_audio,
autotune,
vocal_model,
karaoke_model,
dereverb_model,
deecho,
deeecho_model,
denoise,
denoise_model,
reverb,
vocals_volume,
instrumentals_volume,
backing_vocals_volume,
export_format_final,
devices,
pitch,
filter_radius,
index_rate,
rms_mix_rate,
protect,
pitch_extract,
hop_length,
reverb_room_size,
reverb_damping,
reverb_wet_gain,
reverb_dry_gain,
reverb_width,
embedder_model,
delete_audios,
use_tta,
batch_size,
infer_backing_vocals,
infer_backing_vocals_model,
infer_backing_vocals_index,
change_inst_pitch,
pitch_back,
filter_radius_back,
index_rate_back,
rms_mix_rate_back,
protect_back,
pitch_extract_back,
hop_length_back,
export_format_rvc_back,
split_audio_back,
autotune_back,
embedder_model_back,
],
outputs=[vc_output1, vc_output2],
)
deecho.change(
fn=update_dropdown_visibility,
inputs=deecho,
outputs=deeecho_model,
)
denoise.change(
fn=update_dropdown_visibility,
inputs=denoise,
outputs=denoise_model,
)
reverb.change(
fn=update_reverb_sliders_visibility,
inputs=reverb,
outputs=[
reverb_room_size,
reverb_damping,
reverb_wet_gain,
reverb_dry_gain,
reverb_width,
],
)
pitch_extract.change(
fn=update_hop_length_visibility,
inputs=pitch_extract,
outputs=hop_length,
)
infer_backing_vocals.change(
fn=update_visibility_infer_backing,
inputs=[infer_backing_vocals],
outputs=[
infer_backing_vocals_model,
infer_backing_vocals_index,
refresh_button_infer_backing_vocals,
unload_button_infer_backing_vocals,
back_rvc_settings,
],
)
|