Spaces:
Runtime error
Runtime error
NegiTurkey
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -6,15 +6,23 @@ import torch
|
|
6 |
from torchvision import transforms
|
7 |
import os
|
8 |
import zipfile
|
9 |
-
import numpy as np
|
10 |
from PIL import Image
|
11 |
|
|
|
|
|
|
|
|
|
12 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
13 |
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
|
|
|
|
|
|
|
|
|
|
18 |
transform_image = transforms.Compose(
|
19 |
[
|
20 |
transforms.Resize((1024, 1024)),
|
@@ -23,30 +31,14 @@ transform_image = transforms.Compose(
|
|
23 |
]
|
24 |
)
|
25 |
|
26 |
-
def
|
27 |
-
|
28 |
-
|
29 |
-
image_size = im.size
|
30 |
-
origin = im.copy()
|
31 |
-
input_images = transform_image(im).unsqueeze(0).to("cpu")
|
32 |
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
pred_pil = transforms.ToPILImage()(pred)
|
37 |
-
mask = pred_pil.resize(image_size)
|
38 |
-
|
39 |
-
im.putalpha(mask)
|
40 |
-
output_file_path = os.path.join("output_images", "output_image_single.png")
|
41 |
-
im.save(output_file_path)
|
42 |
-
|
43 |
-
output_path = os.path.join("output_images", "output_image_processed.png")
|
44 |
-
im.save(output_path, "PNG")
|
45 |
-
|
46 |
-
return [im, mask], output_path
|
47 |
|
48 |
-
def fn_url(url):
|
49 |
-
im = load_img(url, output_type="pil")
|
50 |
im = im.convert("RGB")
|
51 |
image_size = im.size
|
52 |
origin = im.copy()
|
@@ -58,19 +50,58 @@ def fn_url(url):
|
|
58 |
pred_pil = transforms.ToPILImage()(pred)
|
59 |
mask = pred_pil.resize(image_size)
|
60 |
|
61 |
-
im.
|
62 |
-
|
63 |
-
|
64 |
-
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
67 |
|
68 |
-
|
|
|
|
|
|
|
69 |
|
70 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
71 |
output_paths = []
|
|
|
|
|
|
|
72 |
for idx, image_path in enumerate(images):
|
73 |
im = load_img(image_path, output_type="pil")
|
|
|
|
|
|
|
74 |
im = im.convert("RGB")
|
75 |
image_size = im.size
|
76 |
input_images = transform_image(im).unsqueeze(0).to("cpu")
|
@@ -81,44 +112,52 @@ def batch_fn(images):
|
|
81 |
pred_pil = transforms.ToPILImage()(pred)
|
82 |
mask = pred_pil.resize(image_size)
|
83 |
|
84 |
-
im.putalpha(mask)
|
85 |
-
|
86 |
-
output_file_path = os.path.join("output_images", f"output_image_batch_{idx + 1}.png")
|
87 |
im.save(output_file_path)
|
88 |
output_paths.append(output_file_path)
|
89 |
|
90 |
-
zip_file_path = os.path.join(
|
91 |
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
|
92 |
for file in output_paths:
|
93 |
zipf.write(file, os.path.basename(file))
|
94 |
|
95 |
-
return zip_file_path
|
96 |
|
|
|
|
|
97 |
batch_image = gr.File(label="Upload multiple images", type="filepath", file_count="multiple")
|
98 |
|
99 |
slider1 = ImageSlider(label="Processed Image", type="pil")
|
100 |
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
|
101 |
-
image = gr.Image(label="Upload an image")
|
102 |
-
text = gr.Textbox(label="Paste an image URL")
|
103 |
-
|
104 |
-
chameleon = load_img("chameleon.jpg", output_type="pil")
|
105 |
-
url = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
106 |
|
107 |
tab1 = gr.Interface(
|
108 |
-
fn
|
|
|
|
|
|
|
|
|
109 |
)
|
110 |
|
111 |
-
tab2 = gr.Interface(
|
|
|
|
|
|
|
|
|
|
|
|
|
112 |
|
113 |
tab3 = gr.Interface(
|
114 |
-
|
115 |
inputs=batch_image,
|
116 |
-
outputs=gr.File(label="Download Processed Files"),
|
117 |
api_name="batch"
|
118 |
)
|
119 |
|
120 |
demo = gr.TabbedInterface(
|
121 |
-
[tab1, tab2, tab3],
|
|
|
|
|
122 |
)
|
123 |
|
124 |
if __name__ == "__main__":
|
|
|
6 |
from torchvision import transforms
|
7 |
import os
|
8 |
import zipfile
|
|
|
9 |
from PIL import Image
|
10 |
|
11 |
+
output_folder = 'output_images'
|
12 |
+
if not os.path.exists(output_folder):
|
13 |
+
os.makedirs(output_folder)
|
14 |
+
|
15 |
torch.set_float32_matmul_precision(["high", "highest"][0])
|
16 |
|
17 |
+
try:
|
18 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
19 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
20 |
+
)
|
21 |
+
birefnet.to("cpu")
|
22 |
+
except Exception as e:
|
23 |
+
print(f"Error loading model: {e}")
|
24 |
+
raise
|
25 |
+
|
26 |
transform_image = transforms.Compose(
|
27 |
[
|
28 |
transforms.Resize((1024, 1024)),
|
|
|
31 |
]
|
32 |
)
|
33 |
|
34 |
+
def process_single_image(image, output_type="mask"):
|
35 |
+
if image is None:
|
36 |
+
return [None, None], None
|
|
|
|
|
|
|
37 |
|
38 |
+
im = load_img(image, output_type="pil")
|
39 |
+
if im is None:
|
40 |
+
return [None, None], None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
41 |
|
|
|
|
|
42 |
im = im.convert("RGB")
|
43 |
image_size = im.size
|
44 |
origin = im.copy()
|
|
|
50 |
pred_pil = transforms.ToPILImage()(pred)
|
51 |
mask = pred_pil.resize(image_size)
|
52 |
|
53 |
+
processed_im = im.copy()
|
54 |
+
processed_im.putalpha(mask)
|
55 |
+
output_file_path = os.path.join(output_folder, "output_image_i2i.png")
|
56 |
+
processed_im.save(output_file_path)
|
57 |
+
|
58 |
+
if output_type == "origin":
|
59 |
+
return [processed_im, origin], output_file_path
|
60 |
+
else:
|
61 |
+
return [processed_im, mask], output_file_path
|
62 |
+
|
63 |
+
def process_image_from_url(url, output_type="mask"):
|
64 |
+
if url is None or url.strip() == "":
|
65 |
+
return [None, None], None
|
66 |
|
67 |
+
try:
|
68 |
+
im = load_img(url, output_type="pil")
|
69 |
+
if im is None:
|
70 |
+
return [None, None], None
|
71 |
|
72 |
+
im = im.convert("RGB")
|
73 |
+
image_size = im.size
|
74 |
+
origin = im.copy()
|
75 |
+
input_images = transform_image(im).unsqueeze(0).to("cpu")
|
76 |
+
|
77 |
+
with torch.no_grad():
|
78 |
+
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
79 |
+
pred = preds[0].squeeze()
|
80 |
+
pred_pil = transforms.ToPILImage()(pred)
|
81 |
+
mask = pred_pil.resize(image_size)
|
82 |
+
|
83 |
+
processed_im = im.copy()
|
84 |
+
processed_im.putalpha(mask)
|
85 |
+
output_file_path = os.path.join(output_folder, "output_image_url.png")
|
86 |
+
processed_im.save(output_file_path)
|
87 |
+
|
88 |
+
if output_type == "origin":
|
89 |
+
return [processed_im, origin], output_file_path
|
90 |
+
else:
|
91 |
+
return [processed_im, mask], output_file_path
|
92 |
+
except Exception as e:
|
93 |
+
return [None, None], str(e)
|
94 |
+
|
95 |
+
def process_batch_images(images):
|
96 |
output_paths = []
|
97 |
+
if not images:
|
98 |
+
return [], None
|
99 |
+
|
100 |
for idx, image_path in enumerate(images):
|
101 |
im = load_img(image_path, output_type="pil")
|
102 |
+
if im is None:
|
103 |
+
continue
|
104 |
+
|
105 |
im = im.convert("RGB")
|
106 |
image_size = im.size
|
107 |
input_images = transform_image(im).unsqueeze(0).to("cpu")
|
|
|
112 |
pred_pil = transforms.ToPILImage()(pred)
|
113 |
mask = pred_pil.resize(image_size)
|
114 |
|
115 |
+
im.putalpha(mask)
|
116 |
+
output_file_path = os.path.join(output_folder, f"output_image_batch_{idx + 1}.png")
|
|
|
117 |
im.save(output_file_path)
|
118 |
output_paths.append(output_file_path)
|
119 |
|
120 |
+
zip_file_path = os.path.join(output_folder, "processed_images.zip")
|
121 |
with zipfile.ZipFile(zip_file_path, 'w') as zipf:
|
122 |
for file in output_paths:
|
123 |
zipf.write(file, os.path.basename(file))
|
124 |
|
125 |
+
return output_paths, zip_file_path
|
126 |
|
127 |
+
image = gr.Image(label="Upload an image")
|
128 |
+
text = gr.Textbox(label="Paste an image URL")
|
129 |
batch_image = gr.File(label="Upload multiple images", type="filepath", file_count="multiple")
|
130 |
|
131 |
slider1 = ImageSlider(label="Processed Image", type="pil")
|
132 |
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
|
|
|
|
|
|
|
|
|
|
|
133 |
|
134 |
tab1 = gr.Interface(
|
135 |
+
fn=process_single_image,
|
136 |
+
inputs=[image, gr.Radio(choices=["mask", "origin"], value="mask", label="Select Output Type")],
|
137 |
+
outputs=[slider1, gr.File(label="PNG Output")],
|
138 |
+
examples=[["chameleon.jpg"]],
|
139 |
+
api_name="image"
|
140 |
)
|
141 |
|
142 |
+
tab2 = gr.Interface(
|
143 |
+
fn=process_image_from_url,
|
144 |
+
inputs=[text, gr.Radio(choices=["mask", "origin"], value="mask", label="Select Output Type")],
|
145 |
+
outputs=[slider2, gr.File(label="PNG Output")],
|
146 |
+
examples=[["https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"]],
|
147 |
+
api_name="text"
|
148 |
+
)
|
149 |
|
150 |
tab3 = gr.Interface(
|
151 |
+
fn=process_batch_images,
|
152 |
inputs=batch_image,
|
153 |
+
outputs=[gr.Gallery(label="Processed Images"), gr.File(label="Download Processed Files")],
|
154 |
api_name="batch"
|
155 |
)
|
156 |
|
157 |
demo = gr.TabbedInterface(
|
158 |
+
[tab1, tab2, tab3],
|
159 |
+
["image", "text", "batch"],
|
160 |
+
title="Multi Birefnet for Background Removal"
|
161 |
)
|
162 |
|
163 |
if __name__ == "__main__":
|