Spaces:
Runtime error
Runtime error
Upload cuet.py
Browse files
cuet.py
ADDED
@@ -0,0 +1,216 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# -*- coding: utf-8 -*-
|
2 |
+
"""Untitled1.ipynb
|
3 |
+
|
4 |
+
Automatically generated by Colaboratory.
|
5 |
+
|
6 |
+
Original file is located at
|
7 |
+
https://colab.research.google.com/drive/1OpumpFAYHp3dJhfH9ZUWpQRDx9FqOVOd
|
8 |
+
"""
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
import requests
|
13 |
+
from bs4 import BeautifulSoup
|
14 |
+
import pandas as pd
|
15 |
+
import matplotlib.pyplot as plt
|
16 |
+
|
17 |
+
def extract_question_options(url):
|
18 |
+
response = requests.get(url)
|
19 |
+
soup = BeautifulSoup(response.content, 'html.parser')
|
20 |
+
tables = soup.find_all('table', class_='menu-tbl')
|
21 |
+
|
22 |
+
question_ids = []
|
23 |
+
chosen_options = []
|
24 |
+
option_1_ids = []
|
25 |
+
option_2_ids = []
|
26 |
+
option_3_ids = []
|
27 |
+
option_4_ids = []
|
28 |
+
|
29 |
+
for table in tables:
|
30 |
+
question_id = table.find('td', string='Question ID :').find_next('td').text
|
31 |
+
chosen_option = table.find('td', string='Chosen Option :').find_next('td').text
|
32 |
+
option_1_id = table.find('td', string='Option 1 ID :').find_next('td').text
|
33 |
+
option_2_id = table.find('td', string='Option 2 ID :').find_next('td').text
|
34 |
+
option_3_id = table.find('td', string='Option 3 ID :').find_next('td').text
|
35 |
+
option_4_id = table.find('td', string='Option 4 ID :').find_next('td').text
|
36 |
+
|
37 |
+
status = table.find('td', string='Status :').find_next('td').text
|
38 |
+
if 'Not Answered' in status or 'Marked For Review' in status:
|
39 |
+
chosen_option = 'Not Attempted'
|
40 |
+
|
41 |
+
question_ids.append(question_id)
|
42 |
+
chosen_options.append(chosen_option)
|
43 |
+
option_1_ids.append(option_1_id)
|
44 |
+
option_2_ids.append(option_2_id)
|
45 |
+
option_3_ids.append(option_3_id)
|
46 |
+
option_4_ids.append(option_4_id)
|
47 |
+
|
48 |
+
data = {
|
49 |
+
'Question ID': question_ids,
|
50 |
+
'Chosen Option': chosen_options,
|
51 |
+
'Option 1 ID': option_1_ids,
|
52 |
+
'Option 2 ID': option_2_ids,
|
53 |
+
'Option 3 ID': option_3_ids,
|
54 |
+
'Option 4 ID': option_4_ids
|
55 |
+
}
|
56 |
+
df = pd.DataFrame(data)
|
57 |
+
|
58 |
+
new_data = []
|
59 |
+
for _, row in df.iterrows():
|
60 |
+
chosen_option = row['Chosen Option']
|
61 |
+
question_id = row['Question ID']
|
62 |
+
if chosen_option == 'Not Attempted':
|
63 |
+
option_id = 'Not Attempted'
|
64 |
+
else:
|
65 |
+
option_id = row[f'Option {chosen_option} ID']
|
66 |
+
|
67 |
+
new_data.append({'Question ID': question_id, 'My Options(s)': option_id})
|
68 |
+
|
69 |
+
new_df = pd.DataFrame(new_data)
|
70 |
+
return new_df
|
71 |
+
|
72 |
+
def extract_question_info(data):
|
73 |
+
lines = data.split("\n")
|
74 |
+
|
75 |
+
result = []
|
76 |
+
skip_row = False
|
77 |
+
|
78 |
+
for line in lines:
|
79 |
+
if line:
|
80 |
+
if skip_row:
|
81 |
+
skip_row = False
|
82 |
+
continue
|
83 |
+
|
84 |
+
parts = line.split("\t")
|
85 |
+
question_id = parts[2]
|
86 |
+
correct_option = ""
|
87 |
+
for option in parts[3:]:
|
88 |
+
if option != "None of These":
|
89 |
+
correct_option = option
|
90 |
+
break
|
91 |
+
|
92 |
+
result.append({"Question ID": question_id, "Correct Option(s)": correct_option})
|
93 |
+
skip_row = True
|
94 |
+
|
95 |
+
df = pd.DataFrame(result)
|
96 |
+
return df
|
97 |
+
|
98 |
+
def compare_answers(data, url):
|
99 |
+
# Call extract_question_info to get the ans_df DataFrame
|
100 |
+
ans_df = extract_question_info(data)
|
101 |
+
|
102 |
+
# Call extract_question_options to get the new_df DataFrame
|
103 |
+
new_df = extract_question_options(url)
|
104 |
+
|
105 |
+
# Merge the two DataFrames based on the 'Question ID' column
|
106 |
+
merged_df = ans_df.merge(new_df, on='Question ID', how='inner')
|
107 |
+
|
108 |
+
# Compare the Correct Option(s) and My Options(s) columns and assign marks
|
109 |
+
merged_df['Marks'] = merged_df.apply(lambda row: 4 if row['Correct Option(s)'] == row['My Options(s)']
|
110 |
+
else (-1 if row['My Options(s)'] != 'Not Attempted' else 0), axis=1)
|
111 |
+
|
112 |
+
# Calculate total marks
|
113 |
+
total_marks = len(ans_df) * 4
|
114 |
+
|
115 |
+
# Calculate number of wrong answers
|
116 |
+
wrong_answers = len(merged_df[merged_df['Marks'] == -1])
|
117 |
+
|
118 |
+
# Calculate number of right answers
|
119 |
+
right_answers = len(merged_df[merged_df['Marks'] == 4])
|
120 |
+
|
121 |
+
# Calculate number of not attempted questions
|
122 |
+
not_attempted = len(new_df[new_df['My Options(s)'] == 'Not Attempted'])
|
123 |
+
|
124 |
+
# Calculate marks obtained
|
125 |
+
marks_obtained = merged_df['Marks'].sum()
|
126 |
+
|
127 |
+
# Calculate percentage score
|
128 |
+
percentage_score = (marks_obtained / total_marks) * 100
|
129 |
+
|
130 |
+
# Create the markdown text
|
131 |
+
text = f"Total Marks: {total_marks}\n"
|
132 |
+
text += f"Number of Wrong Answers: {wrong_answers}\n"
|
133 |
+
text += f"Number of Right Answers: {right_answers}\n"
|
134 |
+
text += f"Number of Not Attempted Questions: {not_attempted}\n"
|
135 |
+
text += f"Marks Obtained: {marks_obtained}\n"
|
136 |
+
text += f"Percentage Score: {percentage_score}\n"
|
137 |
+
|
138 |
+
# Plotting the overall performance
|
139 |
+
labels = ['Right Answers', 'Wrong Answers', 'Not Attempted']
|
140 |
+
sizes = [right_answers, wrong_answers, not_attempted]
|
141 |
+
colors = ['#66BB6A', '#EF5350', '#FFA726']
|
142 |
+
plt.pie(sizes, labels=labels, colors=colors, autopct='%1.1f%%', startangle=90)
|
143 |
+
plt.axis('equal')
|
144 |
+
plt.title('Overall Performance')
|
145 |
+
|
146 |
+
return text, merged_df, plt
|
147 |
+
|
148 |
+
import gradio as gr
|
149 |
+
|
150 |
+
with gr.Blocks(theme='gradio/soft') as demo:
|
151 |
+
gr.Markdown("""
|
152 |
+
## FOLLOW THIS STEPS TO EXTRACT THE DATA
|
153 |
+
![Image](https://i.imgur.com/9dzYJZ1.gif)
|
154 |
+
|
155 |
+
""")
|
156 |
+
data = gr.Textbox(label="Correct Options in The Website",placeholder=
|
157 |
+
"""1 Data Science Artificial Intelligence_Eng - PART A 123456789 987654321
|
158 |
+
987654321 987654322 987654323 987654324 None of These
|
159 |
+
2 Data Science Artificial Intelligence_Eng - PART A 234567890 123456789
|
160 |
+
123456789 123456790 123456791 123456792 None of These
|
161 |
+
3 Data Science Artificial Intelligence_Eng - PART A 345678901 234567890
|
162 |
+
234567890 234567891 234567892 234567893 None of These
|
163 |
+
4 Data Science Artificial Intelligence_Eng - PART A 456789012 345678901
|
164 |
+
345678901 345678902 345678903 345678904 None of These
|
165 |
+
5 Data Science Artificial Intelligence_Eng - PART A 567890123 456789012
|
166 |
+
456789012 456789013 456789014 456789015 None of These
|
167 |
+
6 Data Science Artificial Intelligence_Eng - PART A 678901234 567890123
|
168 |
+
567890123 567890124 567890125 567890126 None of These
|
169 |
+
7 Data Science Artificial Intelligence_Eng - PART A 789012345 678901234
|
170 |
+
678901234 678901235 678901236 678901237 None of These
|
171 |
+
8 Data Science Artificial Intelligence_Eng - PART A 890123456 789012345
|
172 |
+
789012345 789012346 789012347 789012348 None of These
|
173 |
+
9 Data Science Artificial Intelligence_Eng - PART A 901234567 890123456
|
174 |
+
890123456 890123457 890123458 890123459 None of These
|
175 |
+
10 Data Science Artificial Intelligence_Eng - PART A 123456789 901234567
|
176 |
+
901234567 901234568 901234569 901234570 None of These
|
177 |
+
11 Data Science Artificial Intelligence_Eng - PART A 234567890 123456789
|
178 |
+
123456789 123456790 123456791 123456792 None of These
|
179 |
+
12 Data Science Artificial Intelligence_Eng - PART A 345678901 234567890
|
180 |
+
234567890 234567891 234567892 234567893 None of These
|
181 |
+
13 Data Science Artificial Intelligence_Eng - PART A 456789012 345678901
|
182 |
+
345678901 345678902 345678903
|
183 |
+
.
|
184 |
+
.
|
185 |
+
.
|
186 |
+
.
|
187 |
+
95 Data Science Artificial Intelligence_Eng - PART A 678901234 567890123
|
188 |
+
567890123 567890124 567890125 567890126 None of These
|
189 |
+
96 Data Science Artificial Intelligence_Eng - PART A 789012345 678901234
|
190 |
+
678901234 678901235 678901236 678901237 None of These
|
191 |
+
97 Data Science Artificial Intelligence_Eng - PART A 890123456 789012345
|
192 |
+
789012345 789012346 789012347 789012348 None of These
|
193 |
+
98 Data Science Artificial Intelligence_Eng - PART A 901234567 890123456
|
194 |
+
890123456 890123457 890123458 890123459 None of These
|
195 |
+
99 Data Science Artificial Intelligence_Eng - PART A 123456789 901234567
|
196 |
+
901234567 901234568 901234569 901234570 None of These
|
197 |
+
100 Data Science Artificial Intelligence_Eng - PART A 234567890 123456789
|
198 |
+
123456789 123456790 123456791 123456792 None of These""", lines=5)
|
199 |
+
gr.Markdown("""
|
200 |
+
|
201 |
+
![Image](https://i.ibb.co/FVwGm6L/Screenshot-179.png)
|
202 |
+
|
203 |
+
""")
|
204 |
+
url = gr.Textbox(label="Link to your Answers URL",placeholder="https://cdn3.digialm.com//per/g28/pub/XXXX/touchstone/AssessmentQPHTMLMode1//XXXXXXXX/XXXXXXXX/XXXXXXXX/XXXXXXXXXXX.html")
|
205 |
+
btn = gr.Button(value="Check Your Answer!")
|
206 |
+
out = gr.Textbox(value="", label="Output")
|
207 |
+
out1 = gr.Plot()
|
208 |
+
out2=gr.Dataframe()
|
209 |
+
btn.click(compare_answers, inputs=[data, url], outputs=[out,out2,out1])
|
210 |
+
gr.Markdown("""
|
211 |
+
|
212 |
+
if __name__ == "__main__":
|
213 |
+
demo.launch(debug= True,share=True)
|
214 |
+
|
215 |
+
|
216 |
+
|