import face_recognition as fr | |
import cv2 | |
import numpy as np | |
import ImageEncoder as ie | |
#load encoded images | |
# with open("Resource\\data.pickle",'rb')as f: | |
# face_known,face_enco_done = pickle.load(f) | |
def check(face,test_face): | |
face_known,face_enco_done=ie.img_enc(face) | |
face_loca = [] | |
face_enco = [] | |
face_name =[] | |
#to read video and capture attendance | |
img = cv2.imread(test_face) | |
#small_frame = cv2.resize(frame,(0,0),fx = 0.25,fy = 0.25) | |
rgb_frame = img#small_frame#[:,:,::-1] | |
if True: | |
face_loca = fr.face_locations(rgb_frame) | |
face_enco = fr.face_encodings(rgb_frame,face_loca) | |
face_name = [] | |
for face_enc in face_enco: | |
matches = fr.compare_faces(face_enco_done,face_enc) | |
name = "Unknown_Unknown" | |
face_distance = fr.face_distance(face_enco_done,face_enc) | |
best_match = np.argmin(face_distance) | |
if matches[best_match]: | |
return True | |
else: | |
return False | |
# to add a box on the detected face | |
## for (top, right, bottom, left), name in zip(face_loca, face_name): | |
## # Draw a box around the face | |
## cv2.rectangle(frame, (left-20, top-20), (right+20, bottom+20), (255, 0, 0), 2) | |
## | |
## # Draw a label with a name below the face | |
## cv2.rectangle(frame, (left-20, bottom -15), (right+20, bottom+20), (255, 0, 0), cv2.FILLED) | |
## font = cv2.FONT_HERSHEY_DUPLEX | |
## cv2.putText(frame, name, (left -20, bottom + 15), font, 1.0, (255, 255, 255), 2) | |