ConvoTrack / genAI.py
NaikPriyank's picture
Upload 2 files
3f1425d verified
raw
history blame
11.3 kB
# import streamlit as st
# import json
# import torch
# from transformers import AutoTokenizer, AutoModel
# import faiss
# import google.generativeai as genai
# from flashrank.Ranker import Ranker, RerankRequest
# # Configure Google Generative AI API Key
# genai.configure(api_key="AIzaSyArG3gnpZHnzi10mMSnyOMhzYJBeAZEJUs") # Replace with your API key
# # Load and preprocess the uploaded file
# def load_and_preprocess(uploaded_file):
# data = json.load(uploaded_file)
# passages = [f"Speaker: {item['speaker']}. Text: {item['text']}"
# for item in data if item["text"].strip()]
# return data, passages
# # Load embedding model
# def load_model(model_name="BAAI/bge-m3"):
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModel.from_pretrained(model_name)
# return tokenizer, model
# # Generate embeddings
# def generate_embeddings(passages, tokenizer, model, batch_size=10, device="cuda" if torch.cuda.is_available() else "cpu"):
# model.to(device)
# embeddings = []
# for i in range(0, len(passages), batch_size):
# batch = passages[i:i + batch_size]
# inputs = tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
# with torch.no_grad():
# outputs = model(**inputs).last_hidden_state.mean(dim=1)
# embeddings.append(outputs.cpu())
# embeddings = torch.cat(embeddings, dim=0)
# return embeddings.numpy()
# # Store embeddings in FAISS
# def store_in_faiss(embeddings):
# dimension = embeddings.shape[1]
# index = faiss.IndexFlatL2(dimension)
# index.add(embeddings)
# return index
# # Retrieve top-k passages
# def retrieve_top_k(query, tokenizer, model, faiss_index, passages, k=5, device="cuda" if torch.cuda.is_available() else "cpu"):
# model.to(device)
# inputs = tokenizer([query], return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
# with torch.no_grad():
# query_embedding = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
# distances, indices = faiss_index.search(query_embedding, k)
# retrieved_passages = [passages[i] for i in indices[0]]
# return retrieved_passages
# # Rerank passages using FlashRank Ranker
# def rerank_passages(query, passages):
# formatted_passages = [{"text": passage} for passage in passages]
# ranker = Ranker(model_name="rank-T5-flan", cache_dir="/my_cache_dir") # Adjust cache directory as needed
# rerank_request = RerankRequest(query=query, passages=formatted_passages)
# results = ranker.rerank(rerank_request)
# return results
# # Generate a response using Gemini 1.5 Flash
# def generate_response(reranked_passages, query):
# context = " ".join([passage["text"] for passage in reranked_passages])
# input_text = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
# model = genai.GenerativeModel("gemini-1.5-flash")
# response = model.generate_content(input_text)
# return response.text
# # Streamlit app
# def main():
# st.set_page_config(page_title="Chatbot with Document Upload", layout="wide")
# st.title("πŸ“„ Chatbot for Minutes of Meeting")
# # Initialize session state
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = []
# if "faiss_index" not in st.session_state:
# st.session_state.faiss_index = None
# if "passages" not in st.session_state:
# st.session_state.passages = None
# if "tokenizer" not in st.session_state or "model" not in st.session_state:
# st.session_state.tokenizer, st.session_state.model = load_model()
# # File uploader
# uploaded_file = st.file_uploader("Upload a JSON file for processing", type=["json"])
# if uploaded_file:
# st.write("Processing the file...")
# data, passages = load_and_preprocess(uploaded_file)
# st.session_state.passages = passages
# # Generate embeddings and store in FAISS
# tokenizer, model = st.session_state.tokenizer, st.session_state.model
# embeddings = generate_embeddings(passages, tokenizer, model)
# st.session_state.faiss_index = store_in_faiss(embeddings)
# st.success("File processed and embeddings generated successfully!")
# # Chat interface
# if st.session_state.faiss_index:
# st.header("Ask a Question")
# user_query = st.text_input("Type your question here:")
# if user_query:
# # Retrieve and rerank passages
# top_k_passages = retrieve_top_k(user_query, st.session_state.tokenizer, st.session_state.model, st.session_state.faiss_index, st.session_state.passages)
# reranked_passages = rerank_passages(user_query, top_k_passages)
# # Generate response
# response = generate_response(reranked_passages, user_query)
# # Display response
# st.markdown(f"**Question:** {user_query}")
# st.markdown(f"**Answer:** {response}")
# # Update chat history
# st.session_state.chat_history.append({"question": user_query, "answer": response})
# # Chat history
# if st.session_state.chat_history:
# st.header("Chat History")
# for chat in st.session_state.chat_history:
# st.markdown(f"**Q:** {chat['question']}")
# st.markdown(f"**A:** {chat['answer']}")
# # Run the app
# if __name__ == "__main__":
# main()
import streamlit as st
from streamlit_chat import message
import json
import torch
from transformers import AutoTokenizer, AutoModel
import faiss
import google.generativeai as genai
from flashrank.Ranker import Ranker, RerankRequest
from langchain.memory import ConversationBufferMemory
from pydantic import BaseModel,ConfigDict
genai.configure(api_key="AIzaSyArG3gnpZHnzi10mMSnyOMhzYJBeAZEJUs")
class CustomMemory(ConversationBufferMemory):
model_config = ConfigDict(arbitrary_types_allowed=True)
def load_and_preprocess(uploaded_file):
data = json.load(uploaded_file)
passages = [f"Speaker: {item['speaker']}. Text: {item['text']}"
for item in data if item["text"].strip()]
return data, passages
def load_model(model_name="BAAI/bge-m3"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
return tokenizer, model
def generate_embeddings(passages, tokenizer, model, batch_size=10, device="cuda" if torch.cuda.is_available() else "cpu"):
model.to(device)
embeddings = []
for i in range(0, len(passages), batch_size):
batch = passages[i:i + batch_size]
inputs = tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs).last_hidden_state.mean(dim=1)
embeddings.append(outputs.cpu())
embeddings = torch.cat(embeddings, dim=0)
return embeddings.numpy()
def store_in_faiss(embeddings):
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings)
return index
def retrieve_top_k(query, tokenizer, model, faiss_index, passages, k=5, device="cuda" if torch.cuda.is_available() else "cpu"):
model.to(device)
inputs = tokenizer([query], return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad():
query_embedding = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
distances, indices = faiss_index.search(query_embedding, k)
retrieved_passages = [passages[i] for i in indices[0]]
return retrieved_passages
def rerank_passages(query, passages):
formatted_passages = [{"text": passage} for passage in passages]
ranker = Ranker(model_name="rank-T5-flan", cache_dir="/my_cache_dir") # Adjust cache directory as needed
rerank_request = RerankRequest(query=query, passages=formatted_passages)
results = ranker.rerank(rerank_request)
return results
def generate_response(context, query):
input_text = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content(input_text)
return response.text
def handle_userinput(user_question):
top_k_passages = retrieve_top_k(user_question, st.session_state.tokenizer, st.session_state.model, st.session_state.faiss_index, st.session_state.passages)
reranked_passages = rerank_passages(user_question, top_k_passages)
context = " ".join([passage["text"] for passage in reranked_passages])
response = generate_response(context, user_question)
st.session_state.memory.chat_memory.add_user_message(user_question)
st.session_state.memory.chat_memory.add_ai_message(response)
return response
def main():
st.set_page_config(page_title="Chatbot with MoM Document Upload", layout="wide")
st.title("πŸ“„ Chatbot for Minutes of Meeting ")
if "memory" not in st.session_state:
st.session_state.memory = CustomMemory(memory_key='chat_history', return_messages=True)
if "faiss_index" not in st.session_state:
st.session_state.faiss_index = None
if "passages" not in st.session_state:
st.session_state.passages = None
if "tokenizer" not in st.session_state or "model" not in st.session_state:
st.session_state.tokenizer, st.session_state.model = load_model()
uploaded_file = st.file_uploader("Upload a JSON file for processing", type=["json"])
if uploaded_file:
st.write("Processing the file...")
data, passages = load_and_preprocess(uploaded_file)
st.session_state.passages = passages
tokenizer, model = st.session_state.tokenizer, st.session_state.model
embeddings = generate_embeddings(passages, tokenizer, model)
st.session_state.faiss_index = store_in_faiss(embeddings)
st.success("File processed and embeddings generated successfully!")
if st.session_state.faiss_index:
st.header("Ask a Question")
user_query = st.text_input("Type your question here:")
if user_query:
response = handle_userinput(user_query)
if "chat_history_ui" not in st.session_state:
st.session_state.chat_history_ui = []
st.session_state.chat_history_ui.append({"role": "user", "content": user_query})
st.session_state.chat_history_ui.append({"role": "bot", "content": response})
if "chat_history_ui" in st.session_state:
for i,chat in enumerate(st.session_state.chat_history_ui):
if chat["role"] == "user":
message(chat["content"], is_user=True,key=f"user_{i}")
else:
message(chat["content"], is_user=False,key=f"bot_{i}")
if __name__ == "__main__":
main()