Spaces:
Sleeping
Sleeping
File size: 11,292 Bytes
3f1425d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 |
# import streamlit as st
# import json
# import torch
# from transformers import AutoTokenizer, AutoModel
# import faiss
# import google.generativeai as genai
# from flashrank.Ranker import Ranker, RerankRequest
# # Configure Google Generative AI API Key
# genai.configure(api_key="AIzaSyArG3gnpZHnzi10mMSnyOMhzYJBeAZEJUs") # Replace with your API key
# # Load and preprocess the uploaded file
# def load_and_preprocess(uploaded_file):
# data = json.load(uploaded_file)
# passages = [f"Speaker: {item['speaker']}. Text: {item['text']}"
# for item in data if item["text"].strip()]
# return data, passages
# # Load embedding model
# def load_model(model_name="BAAI/bge-m3"):
# tokenizer = AutoTokenizer.from_pretrained(model_name)
# model = AutoModel.from_pretrained(model_name)
# return tokenizer, model
# # Generate embeddings
# def generate_embeddings(passages, tokenizer, model, batch_size=10, device="cuda" if torch.cuda.is_available() else "cpu"):
# model.to(device)
# embeddings = []
# for i in range(0, len(passages), batch_size):
# batch = passages[i:i + batch_size]
# inputs = tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
# with torch.no_grad():
# outputs = model(**inputs).last_hidden_state.mean(dim=1)
# embeddings.append(outputs.cpu())
# embeddings = torch.cat(embeddings, dim=0)
# return embeddings.numpy()
# # Store embeddings in FAISS
# def store_in_faiss(embeddings):
# dimension = embeddings.shape[1]
# index = faiss.IndexFlatL2(dimension)
# index.add(embeddings)
# return index
# # Retrieve top-k passages
# def retrieve_top_k(query, tokenizer, model, faiss_index, passages, k=5, device="cuda" if torch.cuda.is_available() else "cpu"):
# model.to(device)
# inputs = tokenizer([query], return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
# with torch.no_grad():
# query_embedding = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
# distances, indices = faiss_index.search(query_embedding, k)
# retrieved_passages = [passages[i] for i in indices[0]]
# return retrieved_passages
# # Rerank passages using FlashRank Ranker
# def rerank_passages(query, passages):
# formatted_passages = [{"text": passage} for passage in passages]
# ranker = Ranker(model_name="rank-T5-flan", cache_dir="/my_cache_dir") # Adjust cache directory as needed
# rerank_request = RerankRequest(query=query, passages=formatted_passages)
# results = ranker.rerank(rerank_request)
# return results
# # Generate a response using Gemini 1.5 Flash
# def generate_response(reranked_passages, query):
# context = " ".join([passage["text"] for passage in reranked_passages])
# input_text = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
# model = genai.GenerativeModel("gemini-1.5-flash")
# response = model.generate_content(input_text)
# return response.text
# # Streamlit app
# def main():
# st.set_page_config(page_title="Chatbot with Document Upload", layout="wide")
# st.title("π Chatbot for Minutes of Meeting")
# # Initialize session state
# if "chat_history" not in st.session_state:
# st.session_state.chat_history = []
# if "faiss_index" not in st.session_state:
# st.session_state.faiss_index = None
# if "passages" not in st.session_state:
# st.session_state.passages = None
# if "tokenizer" not in st.session_state or "model" not in st.session_state:
# st.session_state.tokenizer, st.session_state.model = load_model()
# # File uploader
# uploaded_file = st.file_uploader("Upload a JSON file for processing", type=["json"])
# if uploaded_file:
# st.write("Processing the file...")
# data, passages = load_and_preprocess(uploaded_file)
# st.session_state.passages = passages
# # Generate embeddings and store in FAISS
# tokenizer, model = st.session_state.tokenizer, st.session_state.model
# embeddings = generate_embeddings(passages, tokenizer, model)
# st.session_state.faiss_index = store_in_faiss(embeddings)
# st.success("File processed and embeddings generated successfully!")
# # Chat interface
# if st.session_state.faiss_index:
# st.header("Ask a Question")
# user_query = st.text_input("Type your question here:")
# if user_query:
# # Retrieve and rerank passages
# top_k_passages = retrieve_top_k(user_query, st.session_state.tokenizer, st.session_state.model, st.session_state.faiss_index, st.session_state.passages)
# reranked_passages = rerank_passages(user_query, top_k_passages)
# # Generate response
# response = generate_response(reranked_passages, user_query)
# # Display response
# st.markdown(f"**Question:** {user_query}")
# st.markdown(f"**Answer:** {response}")
# # Update chat history
# st.session_state.chat_history.append({"question": user_query, "answer": response})
# # Chat history
# if st.session_state.chat_history:
# st.header("Chat History")
# for chat in st.session_state.chat_history:
# st.markdown(f"**Q:** {chat['question']}")
# st.markdown(f"**A:** {chat['answer']}")
# # Run the app
# if __name__ == "__main__":
# main()
import streamlit as st
from streamlit_chat import message
import json
import torch
from transformers import AutoTokenizer, AutoModel
import faiss
import google.generativeai as genai
from flashrank.Ranker import Ranker, RerankRequest
from langchain.memory import ConversationBufferMemory
from pydantic import BaseModel,ConfigDict
genai.configure(api_key="AIzaSyArG3gnpZHnzi10mMSnyOMhzYJBeAZEJUs")
class CustomMemory(ConversationBufferMemory):
model_config = ConfigDict(arbitrary_types_allowed=True)
def load_and_preprocess(uploaded_file):
data = json.load(uploaded_file)
passages = [f"Speaker: {item['speaker']}. Text: {item['text']}"
for item in data if item["text"].strip()]
return data, passages
def load_model(model_name="BAAI/bge-m3"):
tokenizer = AutoTokenizer.from_pretrained(model_name)
model = AutoModel.from_pretrained(model_name)
return tokenizer, model
def generate_embeddings(passages, tokenizer, model, batch_size=10, device="cuda" if torch.cuda.is_available() else "cpu"):
model.to(device)
embeddings = []
for i in range(0, len(passages), batch_size):
batch = passages[i:i + batch_size]
inputs = tokenizer(batch, return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad():
outputs = model(**inputs).last_hidden_state.mean(dim=1)
embeddings.append(outputs.cpu())
embeddings = torch.cat(embeddings, dim=0)
return embeddings.numpy()
def store_in_faiss(embeddings):
dimension = embeddings.shape[1]
index = faiss.IndexFlatL2(dimension)
index.add(embeddings)
return index
def retrieve_top_k(query, tokenizer, model, faiss_index, passages, k=5, device="cuda" if torch.cuda.is_available() else "cpu"):
model.to(device)
inputs = tokenizer([query], return_tensors="pt", padding=True, truncation=True, max_length=512).to(device)
with torch.no_grad():
query_embedding = model(**inputs).last_hidden_state.mean(dim=1).cpu().numpy()
distances, indices = faiss_index.search(query_embedding, k)
retrieved_passages = [passages[i] for i in indices[0]]
return retrieved_passages
def rerank_passages(query, passages):
formatted_passages = [{"text": passage} for passage in passages]
ranker = Ranker(model_name="rank-T5-flan", cache_dir="/my_cache_dir") # Adjust cache directory as needed
rerank_request = RerankRequest(query=query, passages=formatted_passages)
results = ranker.rerank(rerank_request)
return results
def generate_response(context, query):
input_text = f"Context: {context}\n\nQuestion: {query}\n\nAnswer:"
model = genai.GenerativeModel("gemini-1.5-flash")
response = model.generate_content(input_text)
return response.text
def handle_userinput(user_question):
top_k_passages = retrieve_top_k(user_question, st.session_state.tokenizer, st.session_state.model, st.session_state.faiss_index, st.session_state.passages)
reranked_passages = rerank_passages(user_question, top_k_passages)
context = " ".join([passage["text"] for passage in reranked_passages])
response = generate_response(context, user_question)
st.session_state.memory.chat_memory.add_user_message(user_question)
st.session_state.memory.chat_memory.add_ai_message(response)
return response
def main():
st.set_page_config(page_title="Chatbot with MoM Document Upload", layout="wide")
st.title("π Chatbot for Minutes of Meeting ")
if "memory" not in st.session_state:
st.session_state.memory = CustomMemory(memory_key='chat_history', return_messages=True)
if "faiss_index" not in st.session_state:
st.session_state.faiss_index = None
if "passages" not in st.session_state:
st.session_state.passages = None
if "tokenizer" not in st.session_state or "model" not in st.session_state:
st.session_state.tokenizer, st.session_state.model = load_model()
uploaded_file = st.file_uploader("Upload a JSON file for processing", type=["json"])
if uploaded_file:
st.write("Processing the file...")
data, passages = load_and_preprocess(uploaded_file)
st.session_state.passages = passages
tokenizer, model = st.session_state.tokenizer, st.session_state.model
embeddings = generate_embeddings(passages, tokenizer, model)
st.session_state.faiss_index = store_in_faiss(embeddings)
st.success("File processed and embeddings generated successfully!")
if st.session_state.faiss_index:
st.header("Ask a Question")
user_query = st.text_input("Type your question here:")
if user_query:
response = handle_userinput(user_query)
if "chat_history_ui" not in st.session_state:
st.session_state.chat_history_ui = []
st.session_state.chat_history_ui.append({"role": "user", "content": user_query})
st.session_state.chat_history_ui.append({"role": "bot", "content": response})
if "chat_history_ui" in st.session_state:
for i,chat in enumerate(st.session_state.chat_history_ui):
if chat["role"] == "user":
message(chat["content"], is_user=True,key=f"user_{i}")
else:
message(chat["content"], is_user=False,key=f"bot_{i}")
if __name__ == "__main__":
main()
|