NagaSaiAbhinay's picture
Update app.py
197a5cb
raw
history blame
1.41 kB
from diffusers import DiffusionPipeline
import gradio as gr
import torch
import math
import PIL
if torch.cuda.is_available():
device = "cuda"
dtype = torch.float16
else:
device = "cpu"
dtype = torch.bfloat16
pipe = DiffusionPipeline.from_pretrained("kakaobrain/karlo-v1-alpha-image-variations", torch_dtype=dtype, custom_pipeline='unclip_image_interpolation')
pipe.to(device)
def unclip_image_interpolation(
start_image,
end_image,
steps,
seed
):
generator = torch.Generator()
generator.manual_seed(seed)
images = [start_image, end_image]
output = pipe(image=images, steps=steps, generator=generator)
return output.images
inputs = [
gr.Image(type="pil"),
gr.Image(type="pil"),
gr.Slider(minimum=2, maximum=12, default=5, step=1, label="Steps"),
gr.Number(0, label="Seed", precision=0)
]
output = gr.Gallery(
label="Generated images", show_label=False, elem_id="gallery"
).style(grid=[2], height="auto")
examples = [
["starry_night.jpg","dogs.jpg", 5, 20],
["flowers.jpg", "dogs.jpg", 5, 42],
["starry_night.jpg","flowers.jpg", 6, 9011]
]
title = "UnClip Image Interpolation Pipeline"
demo_app = gr.Interface(
fn=unclip_image_interpolation,
inputs=inputs,
outputs=output,
title=title,
theme='huggingface',
examples=examples,
cache_examples=True
)
demo_app.launch(debug=True, enable_queue=True)