MahmoudNasser's picture
Update models.py
c8ac507
raw
history blame
2.05 kB
from keras.preprocessing.text import Tokenizer
from tensorflow.keras.utils import to_categorical
from tensorflow.keras.models import Sequential, load_model
from sklearn.model_selection import train_test_split
from transformers import BertTokenizer, AutoModelForSeq2SeqLM, pipeline
from arabert.preprocess import ArabertPreprocessor
from huggingface_hub import from_pretrained_keras
from collections import Counter
from transformers import AutoTokenizer, AutoModelForCausalLM
import Cleaning
import threading
import pandas as pd
import numpy as np
# Model summury
model_name="abdalrahmanshahrour/auto-arabic-summarization"
preprocessor = ArabertPreprocessor(model_name="")
tokenizer = AutoTokenizer.from_pretrained(model_name)
modelsummary =AutoModelForSeq2SeqLM.from_pretrained(model_name)
pipeline1 = pipeline("text2text-generation",model=modelsummary,tokenizer=tokenizer)
model_sentiment = from_pretrained_keras('MahmoudNasser/GRU-MODEL-EMOTION-AR-TEXT-76jP')
#summary model
def modelsummary(data):
result = pipeline1(data,
pad_token_id= tokenizer.eos_token_id,
num_beams=4,
repetition_penalty=3.0,
max_length=600,
length_penalty=.50,
no_repeat_ngram_size = 3)[0]['generated_text']
result = remove_punctuations(result)
return { 'summary':result}
# def modelpredict(data):
# map = {0:'anger', 1:'sadness', 2:'joy', 3:'surprise', 4:'love', 5:'sympathy', 6:'fear'}
# text = txt_preprocess(data)
# pred=model.predict(pd.Series([data]))
# return {"emotion":map[np.argmax(pred,axis=-1)[0]]}
#Sentiment model
def modelpredict(data):
map = {0:'anger', 1:'sadness', 2:'joy', 3:'surprise', 4:'love', 5:'sympathy', 6:'fear'}
data = Cleaning.txt_preprocess(data)
pred = model_sentiment.predict(pd.Series([data]))
return {"label":map[np.argmax(pred,axis=-1)[0]]}
# return {'anger': float(pred[0][0]), 'sadness': float(pred[0][1]), 'joy': float(pred[0][2]), 'surprise': float(pred[0][3]),
# 'love': float(pred[0][4]), 'sympathy': float(pred[0][5]), 'fear': float(pred[0][6])}