Spaces:
Running
Running
# Copyright 2018 Google LLC | |
# | |
# Licensed under the Apache License, Version 2.0 (the "License"); | |
# you may not use this file except in compliance with the License. | |
# You may obtain a copy of the License at | |
# | |
# https://www.apache.org/licenses/LICENSE-2.0 | |
# | |
# Unless required by applicable law or agreed to in writing, software | |
# distributed under the License is distributed on an "AS IS" BASIS, | |
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
# See the License for the specific language governing permissions and | |
# limitations under the License. | |
# ============================================================================= | |
"""An example script to generate a tfrecord file from a folder containing the | |
renderings. | |
Example usage: | |
python gen_tfrecords.py --input=FOLDER --output=output.tfrecord | |
""" | |
from __future__ import absolute_import | |
from __future__ import division | |
from __future__ import print_function | |
import numpy as np | |
import os | |
from scipy import misc | |
import tensorflow as tf | |
FLAGS = tf.app.flags.FLAGS | |
tf.app.flags.DEFINE_string("input", "", "Input folder containing images") | |
tf.app.flags.DEFINE_string("output", "", "Output tfrecord.") | |
def get_matrix(lines): | |
return np.array([[float(y) for y in x.strip().split(" ")] for x in lines]) | |
def read_model_view_matrices(filename): | |
with open(filename, "r") as f: | |
lines = f.readlines() | |
return get_matrix(lines[:4]), get_matrix(lines[4:]) | |
def bytes_feature(values): | |
return tf.train.Feature(bytes_list=tf.train.BytesList(value=[values])) | |
def generate(): | |
with tf.python_io.TFRecordWriter(FLAGS.output) as tfrecord_writer: | |
with tf.Graph().as_default(): | |
im0 = tf.placeholder(dtype=tf.uint8) | |
im1 = tf.placeholder(dtype=tf.uint8) | |
encoded0 = tf.image.encode_png(im0) | |
encoded1 = tf.image.encode_png(im1) | |
with tf.Session() as sess: | |
count = 0 | |
indir = FLAGS.input + "/" | |
while tf.gfile.Exists(indir + "%06d.txt" % count): | |
print("saving %06d" % count) | |
image0 = misc.imread(indir + "%06d.png" % (count * 2)) | |
image1 = misc.imread(indir + "%06d.png" % (count * 2 + 1)) | |
mat0, mat1 = read_model_view_matrices(indir + "%06d.txt" % count) | |
mati0 = np.linalg.inv(mat0).flatten() | |
mati1 = np.linalg.inv(mat1).flatten() | |
mat0 = mat0.flatten() | |
mat1 = mat1.flatten() | |
st0, st1 = sess.run([encoded0, encoded1], | |
feed_dict={im0: image0, im1: image1}) | |
example = tf.train.Example(features=tf.train.Features(feature={ | |
'img0': bytes_feature(st0), | |
'img1': bytes_feature(st1), | |
'mv0': tf.train.Feature( | |
float_list=tf.train.FloatList(value=mat0)), | |
'mvi0': tf.train.Feature( | |
float_list=tf.train.FloatList(value=mati0)), | |
'mv1': tf.train.Feature( | |
float_list=tf.train.FloatList(value=mat1)), | |
'mvi1': tf.train.Feature( | |
float_list=tf.train.FloatList(value=mati1)), | |
})) | |
tfrecord_writer.write(example.SerializeToString()) | |
count += 1 | |
def main(argv): | |
del argv | |
generate() | |
if __name__ == "__main__": | |
tf.app.run() | |