File size: 5,895 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for DSN components."""

import numpy as np
import tensorflow as tf

#from models.domain_adaptation.domain_separation
import models


class SharedEncodersTest(tf.test.TestCase):

  def _testSharedEncoder(self,
                         input_shape=[5, 28, 28, 1],
                         model=models.dann_mnist,
                         is_training=True):
    images = tf.to_float(np.random.rand(*input_shape))

    with self.test_session() as sess:
      logits, _ = model(images)
      sess.run(tf.global_variables_initializer())
      logits_np = sess.run(logits)
    return logits_np

  def testBuildGRLMnistModel(self):
    logits = self._testSharedEncoder(model=getattr(models,
                                                   'dann_mnist'))
    self.assertEqual(logits.shape, (5, 10))
    self.assertTrue(np.any(logits))

  def testBuildGRLSvhnModel(self):
    logits = self._testSharedEncoder(model=getattr(models,
                                                   'dann_svhn'))
    self.assertEqual(logits.shape, (5, 10))
    self.assertTrue(np.any(logits))

  def testBuildGRLGtsrbModel(self):
    logits = self._testSharedEncoder([5, 40, 40, 3],
                                     getattr(models, 'dann_gtsrb'))
    self.assertEqual(logits.shape, (5, 43))
    self.assertTrue(np.any(logits))

  def testBuildPoseModel(self):
    logits = self._testSharedEncoder([5, 64, 64, 4],
                                     getattr(models, 'dsn_cropped_linemod'))
    self.assertEqual(logits.shape, (5, 11))
    self.assertTrue(np.any(logits))

  def testBuildPoseModelWithBatchNorm(self):
    images = tf.to_float(np.random.rand(10, 64, 64, 4))

    with self.test_session() as sess:
      logits, _ = getattr(models, 'dsn_cropped_linemod')(
          images, batch_norm_params=models.default_batch_norm_params(True))
      sess.run(tf.global_variables_initializer())
      logits_np = sess.run(logits)
    self.assertEqual(logits_np.shape, (10, 11))
    self.assertTrue(np.any(logits_np))


class EncoderTest(tf.test.TestCase):

  def _testEncoder(self, batch_norm_params=None, channels=1):
    images = tf.to_float(np.random.rand(10, 28, 28, channels))

    with self.test_session() as sess:
      end_points = models.default_encoder(
          images, 128, batch_norm_params=batch_norm_params)
      sess.run(tf.global_variables_initializer())
      private_code = sess.run(end_points['fc3'])
    self.assertEqual(private_code.shape, (10, 128))
    self.assertTrue(np.any(private_code))
    self.assertTrue(np.all(np.isfinite(private_code)))

  def testEncoder(self):
    self._testEncoder()

  def testEncoderMultiChannel(self):
    self._testEncoder(None, 4)

  def testEncoderIsTrainingBatchNorm(self):
    self._testEncoder(models.default_batch_norm_params(True))

  def testEncoderBatchNorm(self):
    self._testEncoder(models.default_batch_norm_params(False))


class DecoderTest(tf.test.TestCase):

  def _testDecoder(self,
                   height=64,
                   width=64,
                   channels=4,
                   batch_norm_params=None,
                   decoder=models.small_decoder):
    codes = tf.to_float(np.random.rand(32, 100))

    with self.test_session() as sess:
      output = decoder(
          codes,
          height=height,
          width=width,
          channels=channels,
          batch_norm_params=batch_norm_params)
      sess.run(tf.global_variables_initializer())
      output_np = sess.run(output)
    self.assertEqual(output_np.shape, (32, height, width, channels))
    self.assertTrue(np.any(output_np))
    self.assertTrue(np.all(np.isfinite(output_np)))

  def testSmallDecoder(self):
    self._testDecoder(28, 28, 4, None, getattr(models, 'small_decoder'))

  def testSmallDecoderThreeChannels(self):
    self._testDecoder(28, 28, 3)

  def testSmallDecoderBatchNorm(self):
    self._testDecoder(28, 28, 4, models.default_batch_norm_params(False))

  def testSmallDecoderIsTrainingBatchNorm(self):
    self._testDecoder(28, 28, 4, models.default_batch_norm_params(True))

  def testLargeDecoder(self):
    self._testDecoder(32, 32, 4, None, getattr(models, 'large_decoder'))

  def testLargeDecoderThreeChannels(self):
    self._testDecoder(32, 32, 3, None, getattr(models, 'large_decoder'))

  def testLargeDecoderBatchNorm(self):
    self._testDecoder(32, 32, 4,
                      models.default_batch_norm_params(False),
                      getattr(models, 'large_decoder'))

  def testLargeDecoderIsTrainingBatchNorm(self):
    self._testDecoder(32, 32, 4,
                      models.default_batch_norm_params(True),
                      getattr(models, 'large_decoder'))

  def testGtsrbDecoder(self):
    self._testDecoder(40, 40, 3, None, getattr(models, 'large_decoder'))

  def testGtsrbDecoderBatchNorm(self):
    self._testDecoder(40, 40, 4,
                      models.default_batch_norm_params(False),
                      getattr(models, 'gtsrb_decoder'))

  def testGtsrbDecoderIsTrainingBatchNorm(self):
    self._testDecoder(40, 40, 4,
                      models.default_batch_norm_params(True),
                      getattr(models, 'gtsrb_decoder'))


if __name__ == '__main__':
  tf.test.main()