File size: 6,027 Bytes
0b8359d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
# Copyright 2016 The TensorFlow Authors All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
"""Tests for DSN model assembly functions."""

import numpy as np
import tensorflow as tf

import dsn


class HelperFunctionsTest(tf.test.TestCase):

  def testBasicDomainSeparationStartPoint(self):
    with self.test_session() as sess:
      # Test for when global_step < domain_separation_startpoint
      step = tf.contrib.slim.get_or_create_global_step()
      sess.run(tf.global_variables_initializer())  # global_step = 0
      params = {'domain_separation_startpoint': 2}
      weight = dsn.dsn_loss_coefficient(params)
      weight_np = sess.run(weight)
      self.assertAlmostEqual(weight_np, 1e-10)

      step_op = tf.assign_add(step, 1)
      step_np = sess.run(step_op)  # global_step = 1
      weight = dsn.dsn_loss_coefficient(params)
      weight_np = sess.run(weight)
      self.assertAlmostEqual(weight_np, 1e-10)

      # Test for when global_step >= domain_separation_startpoint
      step_np = sess.run(step_op)  # global_step = 2
      tf.logging.info(step_np)
      weight = dsn.dsn_loss_coefficient(params)
      weight_np = sess.run(weight)
      self.assertAlmostEqual(weight_np, 1.0)


class DsnModelAssemblyTest(tf.test.TestCase):

  def _testBuildDefaultModel(self):
    images = tf.to_float(np.random.rand(32, 28, 28, 1))
    labels = {}
    labels['classes'] = tf.one_hot(
        tf.to_int32(np.random.randint(0, 9, (32))), 10)

    params = {
        'use_separation': True,
        'layers_to_regularize': 'fc3',
        'weight_decay': 0.0,
        'ps_tasks': 1,
        'domain_separation_startpoint': 1,
        'alpha_weight': 1,
        'beta_weight': 1,
        'gamma_weight': 1,
        'recon_loss_name': 'sum_of_squares',
        'decoder_name': 'small_decoder',
        'encoder_name': 'default_encoder',
    }
    return images, labels, params

  def testBuildModelDann(self):
    images, labels, params = self._testBuildDefaultModel()

    with self.test_session():
      dsn.create_model(images, labels,
                       tf.cast(tf.ones([32,]), tf.bool), images, labels,
                       'dann_loss', params, 'dann_mnist')
      loss_tensors = tf.contrib.losses.get_losses()
    self.assertEqual(len(loss_tensors), 6)

  def testBuildModelDannSumOfPairwiseSquares(self):
    images, labels, params = self._testBuildDefaultModel()

    with self.test_session():
      dsn.create_model(images, labels,
                       tf.cast(tf.ones([32,]), tf.bool), images, labels,
                       'dann_loss', params, 'dann_mnist')
      loss_tensors = tf.contrib.losses.get_losses()
    self.assertEqual(len(loss_tensors), 6)

  def testBuildModelDannMultiPSTasks(self):
    images, labels, params = self._testBuildDefaultModel()
    params['ps_tasks'] = 10
    with self.test_session():
      dsn.create_model(images, labels,
                       tf.cast(tf.ones([32,]), tf.bool), images, labels,
                       'dann_loss', params, 'dann_mnist')
      loss_tensors = tf.contrib.losses.get_losses()
    self.assertEqual(len(loss_tensors), 6)

  def testBuildModelMmd(self):
    images, labels, params = self._testBuildDefaultModel()

    with self.test_session():
      dsn.create_model(images, labels,
                       tf.cast(tf.ones([32,]), tf.bool), images, labels,
                       'mmd_loss', params, 'dann_mnist')
      loss_tensors = tf.contrib.losses.get_losses()
    self.assertEqual(len(loss_tensors), 6)

  def testBuildModelCorr(self):
    images, labels, params = self._testBuildDefaultModel()

    with self.test_session():
      dsn.create_model(images, labels,
                       tf.cast(tf.ones([32,]), tf.bool), images, labels,
                       'correlation_loss', params, 'dann_mnist')
      loss_tensors = tf.contrib.losses.get_losses()
    self.assertEqual(len(loss_tensors), 6)

  def testBuildModelNoDomainAdaptation(self):
    images, labels, params = self._testBuildDefaultModel()
    params['use_separation'] = False
    with self.test_session():
      dsn.create_model(images, labels,
                       tf.cast(tf.ones([32,]), tf.bool), images, labels, 'none',
                       params, 'dann_mnist')
      loss_tensors = tf.contrib.losses.get_losses()
      self.assertEqual(len(loss_tensors), 1)
      self.assertEqual(len(tf.contrib.losses.get_regularization_losses()), 0)

  def testBuildModelNoAdaptationWeightDecay(self):
    images, labels, params = self._testBuildDefaultModel()
    params['use_separation'] = False
    params['weight_decay'] = 1e-5
    with self.test_session():
      dsn.create_model(images, labels,
                       tf.cast(tf.ones([32,]), tf.bool), images, labels, 'none',
                       params, 'dann_mnist')
      loss_tensors = tf.contrib.losses.get_losses()
      self.assertEqual(len(loss_tensors), 1)
      self.assertTrue(len(tf.contrib.losses.get_regularization_losses()) >= 1)

  def testBuildModelNoSeparation(self):
    images, labels, params = self._testBuildDefaultModel()
    params['use_separation'] = False
    with self.test_session():
      dsn.create_model(images, labels,
                       tf.cast(tf.ones([32,]), tf.bool), images, labels,
                       'dann_loss', params, 'dann_mnist')
      loss_tensors = tf.contrib.losses.get_losses()
    self.assertEqual(len(loss_tensors), 2)


if __name__ == '__main__':
  tf.test.main()