Spaces:
Running
Running
import datasets | |
import evaluate | |
# from harim_scorer import Harimplus_Scorer #no plan to package it to pip | |
import torch | |
import torch.nn.functional as F | |
from transformers import (AutoModelForSeq2SeqLM, | |
AutoTokenizer, | |
PreTrainedTokenizer, | |
PreTrainedTokenizerFast, | |
) | |
from transformers.tokenization_utils_base import BatchEncoding # for custom tokenizer other than huggingface | |
import pandas as pd | |
from tqdm import tqdm | |
from typing import List, Dict, Union | |
from collections import defaultdict | |
from functools import partial | |
logger = evaluate.logging.get_logger(__name__) | |
CODEBASE_URL='https://huggingface.co/spaces/NCSOFT/harim_plus' | |
PAPER_URL='https://arxiv.org/abs/2211.12118' | |
_CITATION = """\ | |
@inproceedings{son-etal-2022-harim, | |
title = "{H}a{R}i{M}$^+$: Evaluating Summary Quality with Hallucination Risk", | |
author = "Son, Seonil (Simon) and | |
Park, Junsoo and | |
Hwang, Jeong-in and | |
Lee, Junghwa and | |
Noh, Hyungjong and | |
Lee, Yeonsoo", | |
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing", | |
month = nov, | |
year = "2022", | |
address = "Online only", | |
publisher = "Association for Computational Linguistics", | |
url = "https://aclanthology.org/2022.aacl-main.66", | |
pages = "895--924", | |
abstract = "One of the challenges of developing a summarization model arises from the difficulty in measuring the factual inconsistency of the generated text. In this study, we reinterpret the decoder overconfidence-regularizing objective suggested in (Miao et al., 2021) as a hallucination risk measurement to better estimate the quality of generated summaries. We propose a reference-free metric, HaRiM+, which only requires an off-the-shelf summarization model to compute the hallucination risk based on token likelihoods. Deploying it requires no additional training of models or ad-hoc modules, which usually need alignment to human judgments. For summary-quality estimation, HaRiM+ records state-of-the-art correlation to human judgment on three summary-quality annotation sets: FRANK, QAGS, and SummEval. We hope that our work, which merits the use of summarization models, facilitates the progress of both automated evaluation and generation of summary.", | |
} | |
""" | |
_DESCRIPTION = f"""HaRiM+ is a reference-less evaluation metric (i.e. requires only article-summary pair, no reference summary) for summarization which leverages the power of summarization model. | |
Summarization model inside the HaRiM+ will read and evaluate how good the quality of a summary given the paired article. | |
It will work great for ranking the summary-article pairs according to its quality. | |
HaRiM+ is proved effective for benchmarking summarization systems (system-level performance) as well as ranking the article-summary pairs (segment-level performance) in comprehensive aspect such as factuality, consistency, coherency, fluency, and relevance. For details, refer to our [paper]({PAPER_URL}) published in AACL2022. | |
NOTE that for HaRiM+... | |
* predictions = summaries (List[str]) | |
* references = articles (List[str]) | |
Also Note that | |
* higher score = better quality | |
""" | |
_KWARGS_DESCRIPTION = """ | |
HaRiM+ score. | |
Args: | |
For scorer = evaluate.load(): | |
`pretrained_name` (str or pathlib.Path): summarization model checkpoint or path, loaded by transformers.AutoModelForSeq2SeqLM.from_pretrained(). Defaults to Yale-LILY/brio-cnndm-uncased. | |
`tokenizer`: (use when your tokenizer cannot be loaded by from_pretrained)Tokenizer function compatible with transformers.PreTrainedTokenizer. It requires tokenizer.pad_token|eos_token|bos_token and tokenizer.__call__() method for HaRiM+ score computation. | |
For scorer.compute(): | |
`predictions` (list of str): generated summaries | |
`references` (list of str): source articles to be summarized | |
`use_aggregator` (bool=False): if True, average of the scores are returned | |
`bsz` (int=32): batch size for harim to iterate through the given pairs | |
`return_details` (bool=False): whether to show more than harim+ score (returns logppl, harim term. refer to the paper for detail) | |
`tokenwise_score` (bool=False): whether to show tokenwise scores for input pairs (if return_details=False, this is ignored) | |
Returns: | |
'results' (list of float): harim+ score for each summary-article pair | |
Examples: | |
>>> summaries = ["hello there", "hello there"] | |
>>> articles = ["hello, this is the article to be summarized", "hello, this is the article to be summarized"] | |
>>> scorer = evaluate.load("NCSOFT/harim_plus") #, pretrained_name='PRETRAINEDNAME', tokenizer=TOKENIZER # optional | |
>>> results = scorer.compute(predictions=summaries, references=articles) # use_aggregator=True # optional | |
>>> print([round(v, 2) for v in results["harim+"]]) | |
[float, float] | |
""" | |
class Harimplus_Scorer: | |
def __init__(self, | |
pretrained_name:str='none', | |
tokenizer:Union[PreTrainedTokenizer, PreTrainedTokenizerFast]=None, | |
mixing_factor:float=7., # same as lambda in the paper | |
device:str='cuda', | |
src_maxlen=1024, | |
tgt_maxlen=110, | |
): | |
self._pretrained_name = pretrained_name | |
self._lambda = mixing_factor | |
self._device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu') | |
self._encdec_model = AutoModelForSeq2SeqLM.from_pretrained(self._pretrained_name) | |
if tokenizer is None: | |
self._tokenizer = AutoTokenizer.from_pretrained(self._pretrained_name) | |
else: | |
self._tokenizer = tokenizer | |
self._encdec_model.to(self._device) | |
self._encdec_model.eval() | |
self._src_maxlen = src_maxlen | |
self._tgt_maxlen = tgt_maxlen | |
def _prep_input(self, src_tgt_txts, src_or_tgt='src'): | |
L = self._src_maxlen if src_or_tgt=='src' else self._tgt_maxlen | |
if isinstance(src_tgt_txts, pd.Series): | |
src_tgt_txts=src_tgt_txts.tolist() | |
if src_or_tgt == 'src': | |
src_tgt_txts = [ s.replace("\n", " ") for s in src_tgt_txts ] | |
return self._tokenizer(src_tgt_txts, padding=True, truncation=True, max_length=L, return_tensors='pt') # ModelInput dataclass | |
'''below are helper functions w/o dependency to the self, but included inside the class for ease of use''' | |
def likelihoods(self, logits, force_decode_indices, tgt_mask): | |
probs = F.softmax(logits, dim=-1) | |
probs_force_decode_ = probs.gather(-1, force_decode_indices.unsqueeze(-1)).squeeze() | |
probs_force_decode= probs_force_decode_ * tgt_mask | |
assert probs_force_decode.shape == force_decode_indices.shape | |
return probs_force_decode | |
def log_likelihoods(self, logits, force_decode_indices, tgt_mask): | |
ll = F.log_softmax(logits, dim=-1) | |
ll_force_decode_ = ll.gather(-1, force_decode_indices.unsqueeze(-1)).squeeze() | |
ll_force_decode = ll_force_decode_ * tgt_mask | |
return ll_force_decode | |
def harim(self, s2s_logits, lm_logits, force_decode_indices, tgt_mask ): | |
p_s2s, p_lm = self.likelihoods(s2s_logits, force_decode_indices, tgt_mask), \ | |
self.likelihoods(lm_logits, force_decode_indices, tgt_mask) | |
delta = p_s2s - p_lm | |
margin_linear = (1-delta) / 2 | |
harim = -(1-p_s2s) * margin_linear + 1 | |
return harim # this is -1 * hallucination risk | |
def make_minibatches(self, exs:List[str], bsz:int=32): | |
idx=0 | |
minibatches = [] | |
while True: | |
start = id | |
end = idx+bsz | |
if start >= len(exs): | |
break | |
minibatches.append( exs[start:end] ) | |
idx += bsz | |
return minibatches | |
def make_empty_minibatches(self, minibatches:List[List[str]]): | |
e_minibatches = minibatches.copy() | |
for i, mb in enumerate(e_minibatches): | |
e_minibatches[i] = ['' for ex in mb] | |
return e_minibatches | |
def compute(self, predictions:List[str], | |
references:List[str], | |
bsz:int=32, | |
use_aggregator:bool=False, | |
return_details:bool=False, | |
# tokenwise_score:bool=False, | |
): | |
''' | |
returns harim+ score (List[float]) for predictions (summaries) and references (articles) | |
**Note** | |
- here, predictions = generated summaries to be evaluated, references = article to be summarized (but to follow the convention of the evaluate, we named kwarg as "references") | |
- log_ppl equals to bartscore (yuan et al., neurips 2021) | |
if tokenwise_score: | |
returns minibatch chunks of harim+ scores and log-likelihoods with tokenized predictions (List[str]) | |
if use_aggregator: | |
returning scores are aggregated (mean) over given test set | |
''' | |
# tokenize/prep src/tgts | |
make_minibatches_bsz = partial(self.make_minibatches, bsz=bsz) | |
summaries = predictions | |
articles = references | |
b_srcs, b_tgts = map(make_minibatches_bsz, [articles, summaries]) | |
b_emps = self.make_empty_minibatches(b_srcs) | |
scores=defaultdict(list) | |
for mini_s, mini_e, mini_t in tqdm(zip(b_srcs, b_emps, b_tgts), total=len(b_tgts), desc=f"computing HaRiM+ {bsz=}, core={self._pretrained_name}"): | |
src_in = self._prep_input(mini_s, src_or_tgt='src') | |
emp_in = self._prep_input(mini_e, src_or_tgt='src') | |
tgt_in = self._prep_input(mini_t, src_or_tgt='tgt') | |
if emp_in.input_ids.shape[-1]==0: # emp_in.input_ids.shape == (32,0) | |
boseos = f"{self._tokenizer.bos_token}{self._tokenizer.eos_token}" | |
mini_e_ = [boseos for _ in range(len(mini_e))] | |
emp_in = self._prep_input( mini_e_, src_or_tgt='src' ) | |
tgt_mask = tgt_in.attention_mask # torch.Tensor | |
# if not tokenizer loaded from huggingface, this might cause some problem (.to(device)) | |
if not isinstance(src_in, BatchEncoding): | |
src_in = BatchEncoding(src_in) | |
if not isinstance(emp_in, BatchEncoding): | |
emp_in = BatchEncoding(emp_in) | |
if not isinstance(tgt_in, BatchEncoding): | |
tgt_in = BatchEncoding(tgt_in) | |
src_in = src_in.to(self._device) | |
emp_in = emp_in.to(self._device) | |
tgt_in = tgt_in.to(self._device) | |
tgt_mask = tgt_mask.to(self._device) | |
fill_ignore_mask = ~(tgt_mask.bool()) | |
with torch.no_grad(): | |
# token_type_ids attribute causes error | |
s2s_logits = self._encdec_model.forward( | |
input_ids = src_in.input_ids, | |
attention_mask = src_in.attention_mask, | |
labels = tgt_in.input_ids.masked_fill(fill_ignore_mask, -100), | |
return_dict=True).logits | |
lm_logits = self._encdec_model.forward( | |
input_ids = emp_in.input_ids, | |
attention_mask = emp_in.attention_mask, | |
labels = tgt_in.input_ids.masked_fill(fill_ignore_mask, -100), | |
return_dict=True).logits | |
sent_lengths = tgt_mask.sum(-1) | |
ll_tok = self.log_likelihoods(s2s_logits, tgt_in.input_ids, 1)#tgt_mask) | |
ll = ll_tok.sum(-1) / sent_lengths | |
harim_tok = self.harim(s2s_logits, lm_logits, tgt_in.input_ids, 1)#tgt_mask) | |
harim = harim_tok.sum(-1) / sent_lengths | |
harim_plus_normalized = (ll + self._lambda * harim) # loglikelihood + lambda * negative_harim (negative harim=-1* risk) | |
scores['harim+'].extend(harim_plus_normalized.tolist()) | |
scores['harim'].extend(harim.tolist()) | |
scores['log_ppl'].extend(ll.tolist()) | |
# if tokenwise_score: | |
# scores['tok_harim+'].append(harim_tok*self._lambda + ll_tok) | |
# scores['tok_predictions'].append( [self._tokenizer.convert_ids_to_token(idxs) for idxs in src_in.labels] ) | |
if use_aggregator: # after | |
for k, v in scores.items(): | |
if not k.startswith('tok_'): | |
scores[k] = sum(v)/len(v) # aggregate (mean) | |
scores['lambda'] = self._lambda | |
if not return_details: | |
scores = scores['harim+'] | |
return scores | |
class Harimplus(evaluate.Metric): | |
def __init__(self, | |
pretrained_name='facebook/bart-large-cnn', | |
tokenizer=None, | |
device='cuda', | |
**kwargs | |
): | |
super().__init__(**kwargs) | |
self.myconfig = dict( | |
pretrained_name=pretrained_name, | |
tokenizer=tokenizer, | |
device=device, | |
) | |
def _info(self): | |
return evaluate.MetricInfo( | |
description=_DESCRIPTION, | |
citation=_CITATION, | |
homepage=CODEBASE_URL, | |
inputs_description=_KWARGS_DESCRIPTION, | |
features=datasets.Features( | |
{ | |
"predictions": datasets.Value("string", id="sequence"), | |
"references": datasets.Value("string", id="sequence"), | |
} | |
), | |
codebase_urls=[CODEBASE_URL], | |
reference_urls=[CODEBASE_URL, PAPER_URL], | |
) | |
def _download_and_prepare(self, dl_manager): | |
pretrained_name = self.myconfig['pretrained_name'] | |
is_custom_tokenizer = self.myconfig['tokenizer'] is not None | |
logger.warning( | |
"Loading HaRiM+ score" | |
f"\tpretrained_name = {pretrained_name}" | |
) | |
if is_custom_tokenizer: | |
logger.warning( | |
f"tokenizer is overriden by \n\tself.myconfig['tokenizer']" | |
) | |
logger.warning( | |
"You can change checkpoints with `pretrained_name` kwarg in evaluate.load. Strongly recommend to use *-large or larger ones." | |
"Refrain from using checkpoints trained on noisy corpus such as bbc-XSUM.") | |
# download the model checkpoint specified by self.myconfig_name and set up the scorer | |
self.scorer = Harimplus_Scorer(**self.myconfig) | |
def _compute(self, predictions=None, | |
references=None, | |
use_aggregator=False, | |
bsz=32, | |
return_details=False): | |
# tokenwise_score=False, | |
summaries = predictions | |
articles = references | |
scores = self.scorer.compute(predictions=summaries, | |
references=articles, | |
use_aggregator=use_aggregator, | |
bsz=bsz, #tokenwise_score=tokenwise_score, | |
return_details=return_details) | |
return scores | |