Spaces:
Running
Running
File size: 15,705 Bytes
2885a60 b5aef9f 399209a b5aef9f 38283e3 b5aef9f 2885a60 dbb453d 2885a60 dbb453d 2885a60 37d452a adcb90e 2885a60 adcb90e 3f218d0 37d452a 2885a60 8e6a988 2885a60 adcb90e 2885a60 dbb453d 2885a60 b5aef9f 05d366b b5aef9f f25ae2f b5aef9f 399209a b5aef9f a1a10ca b5aef9f a1a10ca b5aef9f a1a10ca b5aef9f f7f866b b5aef9f f7f866b b5aef9f acfc22a b5aef9f f25ae2f b5aef9f 2885a60 3f218d0 2885a60 dbb453d 2885a60 ac939ac 2885a60 f25ae2f 2885a60 f469daa f25ae2f f469daa 2885a60 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
import datasets
import evaluate
# from harim_scorer import Harimplus_Scorer #no plan to package it to pip
import torch
import torch.nn.functional as F
from transformers import (AutoModelForSeq2SeqLM,
AutoTokenizer,
PreTrainedTokenizer,
PreTrainedTokenizerFast,
)
from transformers.tokenization_utils_base import BatchEncoding # for custom tokenizer other than huggingface
import pandas as pd
from tqdm import tqdm
from typing import List, Dict, Union
from collections import defaultdict
from functools import partial
logger = evaluate.logging.get_logger(__name__)
CODEBASE_URL='https://huggingface.co/spaces/NCSOFT/harim_plus'
PAPER_URL='https://arxiv.org/abs/2211.12118'
_CITATION = """\
@inproceedings{son-etal-2022-harim,
title = "{H}a{R}i{M}$^+$: Evaluating Summary Quality with Hallucination Risk",
author = "Son, Seonil (Simon) and
Park, Junsoo and
Hwang, Jeong-in and
Lee, Junghwa and
Noh, Hyungjong and
Lee, Yeonsoo",
booktitle = "Proceedings of the 2nd Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the 12th International Joint Conference on Natural Language Processing",
month = nov,
year = "2022",
address = "Online only",
publisher = "Association for Computational Linguistics",
url = "https://aclanthology.org/2022.aacl-main.66",
pages = "895--924",
abstract = "One of the challenges of developing a summarization model arises from the difficulty in measuring the factual inconsistency of the generated text. In this study, we reinterpret the decoder overconfidence-regularizing objective suggested in (Miao et al., 2021) as a hallucination risk measurement to better estimate the quality of generated summaries. We propose a reference-free metric, HaRiM+, which only requires an off-the-shelf summarization model to compute the hallucination risk based on token likelihoods. Deploying it requires no additional training of models or ad-hoc modules, which usually need alignment to human judgments. For summary-quality estimation, HaRiM+ records state-of-the-art correlation to human judgment on three summary-quality annotation sets: FRANK, QAGS, and SummEval. We hope that our work, which merits the use of summarization models, facilitates the progress of both automated evaluation and generation of summary.",
}
"""
_DESCRIPTION = f"""HaRiM+ is a reference-less evaluation metric (i.e. requires only article-summary pair, no reference summary) for summarization which leverages the power of summarization model.
Summarization model inside the HaRiM+ will read and evaluate how good the quality of a summary given the paired article.
It will work great for ranking the summary-article pairs according to its quality.
HaRiM+ is proved effective for benchmarking summarization systems (system-level performance) as well as ranking the article-summary pairs (segment-level performance) in comprehensive aspect such as factuality, consistency, coherency, fluency, and relevance. For details, refer to our [paper]({PAPER_URL}) published in AACL2022.
NOTE that for HaRiM+...
* predictions = summaries (List[str])
* references = articles (List[str])
Also Note that
* higher score = better quality
"""
_KWARGS_DESCRIPTION = """
HaRiM+ score.
Args:
For scorer = evaluate.load():
`pretrained_name` (str or pathlib.Path): summarization model checkpoint or path, loaded by transformers.AutoModelForSeq2SeqLM.from_pretrained(). Defaults to Yale-LILY/brio-cnndm-uncased.
`tokenizer`: (use when your tokenizer cannot be loaded by from_pretrained)Tokenizer function compatible with transformers.PreTrainedTokenizer. It requires tokenizer.pad_token|eos_token|bos_token and tokenizer.__call__() method for HaRiM+ score computation.
For scorer.compute():
`predictions` (list of str): generated summaries
`references` (list of str): source articles to be summarized
`use_aggregator` (bool=False): if True, average of the scores are returned
`bsz` (int=32): batch size for harim to iterate through the given pairs
`return_details` (bool=False): whether to show more than harim+ score (returns logppl, harim term. refer to the paper for detail)
`tokenwise_score` (bool=False): whether to show tokenwise scores for input pairs (if return_details=False, this is ignored)
Returns:
'results' (list of float): harim+ score for each summary-article pair
Examples:
>>> summaries = ["hello there", "hello there"]
>>> articles = ["hello, this is the article to be summarized", "hello, this is the article to be summarized"]
>>> scorer = evaluate.load("NCSOFT/harim_plus") #, pretrained_name='PRETRAINEDNAME', tokenizer=TOKENIZER # optional
>>> results = scorer.compute(predictions=summaries, references=articles) # use_aggregator=True # optional
>>> print([round(v, 2) for v in results["harim+"]])
[float, float]
"""
class Harimplus_Scorer:
def __init__(self,
pretrained_name:str='none',
tokenizer:Union[PreTrainedTokenizer, PreTrainedTokenizerFast]=None,
mixing_factor:float=7., # same as lambda in the paper
device:str='cuda',
src_maxlen=1024,
tgt_maxlen=110,
):
self._pretrained_name = pretrained_name
self._lambda = mixing_factor
self._device = torch.device('cuda') if torch.cuda.is_available() else torch.device('cpu')
self._encdec_model = AutoModelForSeq2SeqLM.from_pretrained(self._pretrained_name)
if tokenizer is None:
self._tokenizer = AutoTokenizer.from_pretrained(self._pretrained_name)
else:
self._tokenizer = tokenizer
self._encdec_model.to(self._device)
self._encdec_model.eval()
self._src_maxlen = src_maxlen
self._tgt_maxlen = tgt_maxlen
def _prep_input(self, src_tgt_txts, src_or_tgt='src'):
L = self._src_maxlen if src_or_tgt=='src' else self._tgt_maxlen
if isinstance(src_tgt_txts, pd.Series):
src_tgt_txts=src_tgt_txts.tolist()
if src_or_tgt == 'src':
src_tgt_txts = [ s.replace("\n", " ") for s in src_tgt_txts ]
return self._tokenizer(src_tgt_txts, padding=True, truncation=True, max_length=L, return_tensors='pt') # ModelInput dataclass
'''below are helper functions w/o dependency to the self, but included inside the class for ease of use'''
def likelihoods(self, logits, force_decode_indices, tgt_mask):
probs = F.softmax(logits, dim=-1)
probs_force_decode_ = probs.gather(-1, force_decode_indices.unsqueeze(-1)).squeeze()
probs_force_decode= probs_force_decode_ * tgt_mask
assert probs_force_decode.shape == force_decode_indices.shape
return probs_force_decode
def log_likelihoods(self, logits, force_decode_indices, tgt_mask):
ll = F.log_softmax(logits, dim=-1)
ll_force_decode_ = ll.gather(-1, force_decode_indices.unsqueeze(-1)).squeeze()
ll_force_decode = ll_force_decode_ * tgt_mask
return ll_force_decode
def harim(self, s2s_logits, lm_logits, force_decode_indices, tgt_mask ):
p_s2s, p_lm = self.likelihoods(s2s_logits, force_decode_indices, tgt_mask), \
self.likelihoods(lm_logits, force_decode_indices, tgt_mask)
delta = p_s2s - p_lm
margin_linear = (1-delta) / 2
harim = -(1-p_s2s) * margin_linear + 1
return harim # this is -1 * hallucination risk
def make_minibatches(self, exs:List[str], bsz:int=32):
idx=0
minibatches = []
while True:
start = idx
end = idx+bsz
if start >= len(exs):
break
minibatches.append( exs[start:end] )
idx += bsz
return minibatches
def make_empty_minibatches(self, minibatches:List[List[str]]):
e_minibatches = minibatches.copy()
for i, mb in enumerate(e_minibatches):
e_minibatches[i] = ['' for ex in mb]
return e_minibatches
def compute(self, predictions:List[str],
references:List[str],
bsz:int=32,
use_aggregator:bool=False,
return_details:bool=False,
# tokenwise_score:bool=False,
):
'''
returns harim+ score (List[float]) for predictions (summaries) and references (articles)
**Note**
- here, predictions = generated summaries to be evaluated, references = article to be summarized (but to follow the convention of the evaluate, we named kwarg as "references")
- log_ppl equals to bartscore (yuan et al., neurips 2021)
if tokenwise_score:
returns minibatch chunks of harim+ scores and log-likelihoods with tokenized predictions (List[str])
if use_aggregator:
returning scores are aggregated (mean) over given test set
'''
# tokenize/prep src/tgts
make_minibatches_bsz = partial(self.make_minibatches, bsz=bsz)
summaries = predictions
articles = references
b_srcs, b_tgts = map(make_minibatches_bsz, [articles, summaries])
b_emps = self.make_empty_minibatches(b_srcs)
scores=defaultdict(list)
for mini_s, mini_e, mini_t in tqdm(zip(b_srcs, b_emps, b_tgts), total=len(b_tgts), desc=f"computing HaRiM+ {bsz=}, core={self._pretrained_name}"):
src_in = self._prep_input(mini_s, src_or_tgt='src')
emp_in = self._prep_input(mini_e, src_or_tgt='src')
tgt_in = self._prep_input(mini_t, src_or_tgt='tgt')
if emp_in.input_ids.shape[-1]==0: # emp_in.input_ids.shape == (32,0)
boseos = f"{self._tokenizer.bos_token}{self._tokenizer.eos_token}"
mini_e_ = [boseos for _ in range(len(mini_e))]
emp_in = self._prep_input( mini_e_, src_or_tgt='src' )
tgt_mask = tgt_in.attention_mask # torch.Tensor
# if not tokenizer loaded from huggingface, this might cause some problem (.to(device))
if not isinstance(src_in, BatchEncoding):
src_in = BatchEncoding(src_in)
if not isinstance(emp_in, BatchEncoding):
emp_in = BatchEncoding(emp_in)
if not isinstance(tgt_in, BatchEncoding):
tgt_in = BatchEncoding(tgt_in)
src_in = src_in.to(self._device)
emp_in = emp_in.to(self._device)
tgt_in = tgt_in.to(self._device)
tgt_mask = tgt_mask.to(self._device)
fill_ignore_mask = ~(tgt_mask.bool())
with torch.no_grad():
# token_type_ids attribute causes error
s2s_logits = self._encdec_model.forward(
input_ids = src_in.input_ids,
attention_mask = src_in.attention_mask,
labels = tgt_in.input_ids.masked_fill(fill_ignore_mask, -100),
return_dict=True).logits
lm_logits = self._encdec_model.forward(
input_ids = emp_in.input_ids,
attention_mask = emp_in.attention_mask,
labels = tgt_in.input_ids.masked_fill(fill_ignore_mask, -100),
return_dict=True).logits
sent_lengths = tgt_mask.sum(-1)
ll_tok = self.log_likelihoods(s2s_logits, tgt_in.input_ids, tgt_mask)
ll = ll_tok.sum(-1) / sent_lengths
harim_tok = self.harim(s2s_logits, lm_logits, tgt_in.input_ids, tgt_mask)
harim = harim_tok.sum(-1) / sent_lengths
harim_plus_normalized = (ll + self._lambda * harim) # loglikelihood + lambda * negative_harim (negative harim=-1* risk)
scores['harim+'].extend(harim_plus_normalized.tolist())
scores['harim'].extend(harim.tolist())
scores['log_ppl'].extend(ll.tolist())
# if tokenwise_score:
# scores['tok_harim+'].append(harim_tok*self._lambda + ll_tok)
# scores['tok_predictions'].append( [self._tokenizer.convert_ids_to_token(idxs) for idxs in src_in.labels] )
if use_aggregator: # after
for k, v in scores.items():
if not k.startswith('tok_'):
scores[k] = sum(v)/len(v) # aggregate (mean)
scores['lambda'] = self._lambda
if not return_details:
scores = scores['harim+']
return scores
@evaluate.utils.file_utils.add_start_docstrings(_DESCRIPTION, _KWARGS_DESCRIPTION)
class Harimplus(evaluate.Metric):
def __init__(self,
pretrained_name='facebook/bart-large-cnn',
tokenizer=None,
device='cuda',
**kwargs
):
super().__init__(**kwargs)
self.myconfig = dict(
pretrained_name=pretrained_name,
tokenizer=tokenizer,
device=device,
)
def _info(self):
return evaluate.MetricInfo(
description=_DESCRIPTION,
citation=_CITATION,
homepage=CODEBASE_URL,
inputs_description=_KWARGS_DESCRIPTION,
features=datasets.Features(
{
"predictions": datasets.Value("string", id="sequence"),
"references": datasets.Value("string", id="sequence"),
}
),
codebase_urls=[CODEBASE_URL],
reference_urls=[CODEBASE_URL, PAPER_URL],
)
def _download_and_prepare(self, dl_manager):
pretrained_name = self.myconfig['pretrained_name']
is_custom_tokenizer = self.myconfig['tokenizer'] is not None
logger.warning(
"Loading HaRiM+ score"
f"\tpretrained_name = {pretrained_name}"
)
if is_custom_tokenizer:
logger.warning(
f"tokenizer is overriden by \n\tself.myconfig['tokenizer']"
)
logger.warning(
"You can change checkpoints with `pretrained_name` kwarg in evaluate.load. Strongly recommend to use *-large or larger ones."
"Refrain from using checkpoints trained on noisy corpus such as bbc-XSUM.")
# download the model checkpoint specified by self.myconfig_name and set up the scorer
self.scorer = Harimplus_Scorer(**self.myconfig)
def _compute(self, predictions=None,
references=None,
use_aggregator=False,
bsz=32,
return_details=False):
# tokenwise_score=False,
summaries = predictions
articles = references
scores = self.scorer.compute(predictions=summaries,
references=articles,
use_aggregator=use_aggregator,
bsz=bsz, #tokenwise_score=tokenwise_score,
return_details=return_details)
return scores
|