Spaces:
Sleeping
Sleeping
File size: 1,311 Bytes
9c7e22f 0ffcc97 29d374a 3d98c15 f8496a1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 |
import streamlit as st
from llama_cpp import Llama
llm = Llama.from_pretrained(
repo_id="Mykes/med_gemma7b_gguf",
filename="*Q4_K_M.gguf",
verbose=False
)
basic_prompt = "Below is the context which is your conversation history and the last user question. Write a response according the context and question. ### Context: user: Ответь мне на вопрос о моем здоровье. assistant: Конечно! Какой у Вас вопрос? ### Question: {question} ### Response:"
def generate_response(question):
model_input = basic_prompt.format(question=input_text)
if question:
output = llm(
model_input, # Prompt
max_tokens=32, # Generate up to 32 tokens, set to None to generate up to the end of the context window
stop=["<end_of_turn>"],
echo=False # Echo the prompt back in the output
) # Generate a completion, can also call create_completion
st.write(output["choices"][0]["text"])
else:
st.write("Please enter a question to get a response.")
# Streamlit text input widget
input_text = st.text_input('Задайте мне медицинский вопрос...')
# Button to trigger response generation
if st.button('Generate Response'):
generate_response(input_text)
|