File size: 1,467 Bytes
9c7e22f
0ffcc97
 
 
 
 
 
 
29d374a
 
 
0ffcc97
 
 
 
 
 
cf8ca80
 
 
0ffcc97
 
 
 
 
 
 
 
 
 
 
cf8ca80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
import streamlit as st
from llama_cpp import Llama

llm = Llama.from_pretrained(
    repo_id="Mykes/med_gemma7b_gguf",
    filename="*Q4_K_M.gguf",
    verbose=False
)

input_text = st.textarea('text')
if text:
    output = llm(
      input_text, # Prompt
      max_tokens=32, # Generate up to 32 tokens, set to None to generate up to the end of the context window
      stop=["Q:", "\n"], # Stop generating just before the model would generate a new question
      echo=True # Echo the prompt back in the output
    ) # Generate a completion, can also call create_completion
    st.write(outputs)


# from ctransformers import AutoModelForCausalLM, AutoTokenizer

# model = AutoModelForCausalLM.from_pretrained("Mykes/med_gemma7b_gguf", model_file="unsloth.Q4_K_M.gguf")
# tokenizer = AutoTokenizer.from_pretrained(model)
# input_text = st.textarea('text')
# if text:
#     input_ids = tokenizer(input_text, return_tensors="pt")
#     outputs = model.generate(**input_ids)
#     st.write(outputs)



# from transformers import AutoTokenizer, AutoModelForCausalLM

# model_id = "Mykes/med_gemma7b_gguf"
# filename = "unsloth.Q4_K_M.gguf"

# tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
# model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename)



# input_text = st.textarea('text')
# if text:
#     input_ids = tokenizer(input_text, return_tensors="pt")
#     outputs = model.generate(**input_ids)
#     st.write(outputs)