|
import gradio as gr |
|
from transformers import pipeline |
|
|
|
|
|
pipe = pipeline(task="ner", |
|
model='Mykes/rubert_ner_SDDCS', |
|
tokenizer='Mykes/rubert_ner_SDDCS', |
|
aggregation_strategy='first') |
|
|
|
def process_text(text): |
|
|
|
results = pipe(text.lower()) |
|
|
|
|
|
output = [] |
|
for entity in results: |
|
formatted_result = f"Type: {entity['entity_group']}\nWord: {entity['word']}\nScore: {entity['score']:.4f}\n" |
|
output.append(formatted_result) |
|
|
|
return "\n".join(output) |
|
|
|
|
|
iface = gr.Interface( |
|
fn=process_text, |
|
inputs=gr.Textbox(lines=3, placeholder="Enter your text here..."), |
|
outputs=gr.Textbox(lines=10), |
|
title="Medical NER for Russian Text", |
|
description="This model identifies medical entities (diseases, symptoms, drugs, etc.) in Russian text.", |
|
examples=[ |
|
["У ребенка треога и норушения сна, потеря сознания, раньше ставили паническое расстройство. по назначению психиатра принимал атаракс без эффекта."], |
|
] |
|
) |
|
|
|
|
|
iface.launch() |