Spaces:
Runtime error
Runtime error
Upload 3 files
Browse files- app.py +259 -0
- best.pt +3 -0
- runs/best.pt +3 -0
app.py
ADDED
@@ -0,0 +1,259 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from ultralyticsplus import YOLO, render_result
|
4 |
+
from PIL import Image
|
5 |
+
|
6 |
+
# torch.hub.download_url_to_file(
|
7 |
+
# 'https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftexashafts.com%2Fwp-content%2Fuploads%2F2016%2F04%2Fconstruction-worker.jpg', 'one.jpg')
|
8 |
+
# torch.hub.download_url_to_file(
|
9 |
+
# 'https://www.pearsonkoutcherlaw.com/wp-content/uploads/2020/06/Construction-Workers.jpg', 'two.jpg')
|
10 |
+
# torch.hub.download_url_to_file(
|
11 |
+
# 'https://nssgroup.com/wp-content/uploads/2019/02/Building-maintenance-blog.jpg', 'three.jpg')
|
12 |
+
|
13 |
+
|
14 |
+
def yoloV8_func(image: gr.inputs.Image = None, image_size = (1024, 768),
|
15 |
+
# conf_threshold: gr.inputs.Slider = 0.4,
|
16 |
+
# iou_threshold: gr.inputs.Slider = 0.50
|
17 |
+
):
|
18 |
+
# def yoloV8_func(image):
|
19 |
+
|
20 |
+
"""This function performs YOLOv8 object detection on the given image.
|
21 |
+
|
22 |
+
Args:
|
23 |
+
image (gr.inputs.Image, optional): Input image to detect objects on. Defaults to None.
|
24 |
+
image_size (gr.inputs.Slider, optional): Desired image size for the model. Defaults to 640.
|
25 |
+
conf_threshold (gr.inputs.Slider, optional): Confidence threshold for object detection. Defaults to 0.4.
|
26 |
+
iou_threshold (gr.inputs.Slider, optional): Intersection ผover Union threshold for object detection. Defaults to 0.50.
|
27 |
+
"""
|
28 |
+
# Load the YOLOv8 model from the 'best.pt' checkpoint
|
29 |
+
model_path = ('runs/best.pt')
|
30 |
+
model = YOLO(model_path)
|
31 |
+
|
32 |
+
# model.conf = 0.40 # Confidence threshold
|
33 |
+
# model.iou = 0.45 # IoU threshold
|
34 |
+
# model.agnostic = True # NMS class-agnostic
|
35 |
+
# model.multi_label = False # Whether to evaluate as multi-label classification
|
36 |
+
# model.max_det = 100 # Maximum number of detections per image
|
37 |
+
|
38 |
+
#image = Image.fromarray(image).resize(1024, 768)
|
39 |
+
|
40 |
+
# Perform object detection on the input image using the YOLOv8 model
|
41 |
+
results = model.predict(image,
|
42 |
+
# conf=conf_threshold,
|
43 |
+
# iou=iou_threshold,
|
44 |
+
imgsz=image_size
|
45 |
+
)
|
46 |
+
|
47 |
+
# Print the detected objects' information (class, coordinates, and probability)
|
48 |
+
box = results[0].boxes
|
49 |
+
print("Object type:", box.cls)
|
50 |
+
print("Coordinates:", box.xyxy)
|
51 |
+
print("Probability:", box.conf)
|
52 |
+
|
53 |
+
# Render the output image with bounding boxes around detected objects
|
54 |
+
render = render_result(model=model, image=image, result=results[0])
|
55 |
+
return render
|
56 |
+
|
57 |
+
|
58 |
+
inputs = [
|
59 |
+
gr.inputs.Image(type="filepath", label="Input Image", shape=(1024, 768)),
|
60 |
+
#interface
|
61 |
+
# gr.inputs.Slider(minimum=320, maximum=1280, default=640,
|
62 |
+
# step=32, label="Image Size"),
|
63 |
+
# gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25,
|
64 |
+
# step=0.05, label="Confidence Threshold"),
|
65 |
+
# gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45,
|
66 |
+
# step=0.05, label="IOU Threshold"),
|
67 |
+
]
|
68 |
+
|
69 |
+
outputs = [gr.outputs.Image(type="filepath", label="Output Image")]
|
70 |
+
|
71 |
+
title = "YOLOv8 Cocoa Seed Classification"
|
72 |
+
|
73 |
+
|
74 |
+
# examples = [['one.jpg',0.5, 0.7],
|
75 |
+
# ['two.jpg', 0.5, 0.6],
|
76 |
+
# ['three.jpg',0.5, 0.8]]
|
77 |
+
|
78 |
+
yolo_app = gr.Interface(
|
79 |
+
fn=yoloV8_func,
|
80 |
+
inputs=inputs,
|
81 |
+
outputs=outputs,
|
82 |
+
title=title,
|
83 |
+
# examples=examples,
|
84 |
+
cache_examples=True,
|
85 |
+
)
|
86 |
+
|
87 |
+
# Launch the Gradio interface in debug mode with queue enabled
|
88 |
+
yolo_app.launch(debug=True, enable_queue=True)
|
89 |
+
|
90 |
+
# import gradio as gr
|
91 |
+
# import torch
|
92 |
+
# from ultralyticsplus import YOLO, render_result
|
93 |
+
|
94 |
+
|
95 |
+
# torch.hub.download_url_to_file(
|
96 |
+
# 'https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftexashafts.com%2Fwp-content%2Fuploads%2F2016%2F04%2Fconstruction-worker.jpg', 'one.jpg')
|
97 |
+
# torch.hub.download_url_to_file(
|
98 |
+
# 'https://www.pearsonkoutcherlaw.com/wp-content/uploads/2020/06/Construction-Workers.jpg', 'two.jpg')
|
99 |
+
# torch.hub.download_url_to_file(
|
100 |
+
# 'https://nssgroup.com/wp-content/uploads/2019/02/Building-maintenance-blog.jpg', 'three.jpg')
|
101 |
+
|
102 |
+
|
103 |
+
# def yoloV8_func(image: gr.inputs.Image = None,
|
104 |
+
# image_size: gr.inputs.Slider = 640,
|
105 |
+
# conf_threshold: gr.inputs.Slider = 0.4,
|
106 |
+
# iou_threshold: gr.inputs.Slider = 0.50):
|
107 |
+
# """This function performs YOLOv8 object detection on the given image.
|
108 |
+
|
109 |
+
# Args:
|
110 |
+
# image (gr.inputs.Image, optional): Input image to detect objects on. Defaults to None.
|
111 |
+
# image_size (gr.inputs.Slider, optional): Desired image size for the model. Defaults to 640.
|
112 |
+
# conf_threshold (gr.inputs.Slider, optional): Confidence threshold for object detection. Defaults to 0.4.
|
113 |
+
# iou_threshold (gr.inputs.Slider, optional): Intersection ผover Union threshold for object detection. Defaults to 0.50.
|
114 |
+
# """
|
115 |
+
# # Load the YOLOv8 model from the 'best.pt' checkpoint
|
116 |
+
# model_path = ('runs/best.pt')
|
117 |
+
# model = YOLO(model_path)
|
118 |
+
|
119 |
+
# # Perform object detection on the input image using the YOLOv8 model
|
120 |
+
# results = model.predict(image,
|
121 |
+
# conf=conf_threshold,
|
122 |
+
# iou=iou_threshold,
|
123 |
+
# imgsz=image_size)
|
124 |
+
|
125 |
+
# # Print the detected objects' information (class, coordinates, and probability)
|
126 |
+
# box = results[0].boxes
|
127 |
+
# print("Object type:", box.cls)
|
128 |
+
# print("Coordinates:", box.xyxy)
|
129 |
+
# print("Probability:", box.conf)
|
130 |
+
|
131 |
+
# # Render the output image with bounding boxes around detected objects
|
132 |
+
# render = render_result(model=model, image=image, result=results[0])
|
133 |
+
# return render
|
134 |
+
|
135 |
+
|
136 |
+
# inputs = [
|
137 |
+
# gr.inputs.Image(type="filepath", label="Input Image"),
|
138 |
+
# gr.inputs.Slider(minimum=320, maximum=1280, default=640,
|
139 |
+
# step=32, label="Image Size"),
|
140 |
+
# gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.25,
|
141 |
+
# step=0.05, label="Confidence Threshold"),
|
142 |
+
# gr.inputs.Slider(minimum=0.0, maximum=1.0, default=0.45,
|
143 |
+
# step=0.05, label="IOU Threshold"),
|
144 |
+
# ]
|
145 |
+
|
146 |
+
|
147 |
+
# outputs = gr.outputs.Image(type="filepath", label="Output Image")
|
148 |
+
|
149 |
+
# title = "YOLOv8 101: Custom Object Detection on Construction Workers"
|
150 |
+
|
151 |
+
|
152 |
+
# examples = [['one.jpg', 640, 0.5, 0.7],
|
153 |
+
# ['two.jpg', 800, 0.5, 0.6],
|
154 |
+
# ['three.jpg', 900, 0.5, 0.8]]
|
155 |
+
|
156 |
+
# yolo_app = gr.Interface(
|
157 |
+
# fn=yoloV8_func,
|
158 |
+
# inputs=inputs,
|
159 |
+
# outputs=outputs,
|
160 |
+
# title=title,
|
161 |
+
# examples=examples,
|
162 |
+
# cache_examples=True,
|
163 |
+
# )
|
164 |
+
|
165 |
+
# # Launch the Gradio interface in debug mode with queue enabled
|
166 |
+
# yolo_app.launch(debug=True, enable_queue=True)
|
167 |
+
|
168 |
+
|
169 |
+
|
170 |
+
|
171 |
+
|
172 |
+
|
173 |
+
|
174 |
+
|
175 |
+
|
176 |
+
|
177 |
+
|
178 |
+
# import gradio as gr
|
179 |
+
# import torch
|
180 |
+
# from ultralyticsplus import YOLO, render_result
|
181 |
+
# from PIL import Image
|
182 |
+
|
183 |
+
# # Load your model
|
184 |
+
# model_path = ('runs/best.pt')
|
185 |
+
# model = YOLO(model_path)
|
186 |
+
# # model.conf = 0.40
|
187 |
+
# # model.iou = 0.45
|
188 |
+
# # model.agnostic = True
|
189 |
+
# # model.multi_label = False
|
190 |
+
# # model.max_det = 100
|
191 |
+
# # model.overrides['conf'] = 0.25 # NMS confidence threshold
|
192 |
+
# # model.overrides['iou'] = 0.45 # NMS IoU threshold
|
193 |
+
# # model.overrides['agnostic_nms'] = False # NMS class-agnostic
|
194 |
+
# # model.overrides['max_det'] = 1000 # maximum number of detections per image
|
195 |
+
|
196 |
+
# #css = ".output_image {height: 40rem !important; width: 100% !important;}"
|
197 |
+
|
198 |
+
# def predict(input_image):
|
199 |
+
# try:
|
200 |
+
# # Perform inference
|
201 |
+
# results = model(input_image, size=(1024, 768), augment=True)
|
202 |
+
|
203 |
+
# # Convert result image with bounding boxes to PIL format for Gradio output
|
204 |
+
# result_image = Image.fromarray(results.render()[0])
|
205 |
+
|
206 |
+
# return result_image
|
207 |
+
|
208 |
+
# except Exception as e:
|
209 |
+
# return f"Error: {str(e)}"
|
210 |
+
|
211 |
+
# # Set up Gradio interface
|
212 |
+
# interface = gr.Interface(
|
213 |
+
# fn=predict,
|
214 |
+
# inputs=gr.inputs.Image(type="pil", label="Upload an Image1"),
|
215 |
+
# outputs=gr.outputs.Image(type="pil", label="Result1"),
|
216 |
+
# #css = css,
|
217 |
+
# title="Object Detection using YOLOv5 - NEW MODEL 2024",
|
218 |
+
# description="Upload an image to detect objects using the YOLOv5 model"
|
219 |
+
# )
|
220 |
+
# interface.launch()
|
221 |
+
# import gradio as gr
|
222 |
+
# import torch
|
223 |
+
# from ultralyticsplus import YOLO, render_result
|
224 |
+
# from PIL import Image
|
225 |
+
|
226 |
+
|
227 |
+
# torch.hub.download_url_to_file(
|
228 |
+
# 'https://external-content.duckduckgo.com/iu/?u=https%3A%2F%2Ftexashafts.com%2Fwp-content%2Fuploads%2F2016%2F04%2Fconstruction-worker.jpg', 'one.jpg')
|
229 |
+
# torch.hub.download_url_to_file(
|
230 |
+
# 'https://www.pearsonkoutcherlaw.com/wp-content/uploads/2020/06/Construction-Workers.jpg', 'two.jpg')
|
231 |
+
# torch.hub.download_url_to_file(
|
232 |
+
# 'https://nssgroup.com/wp-content/uploads/2019/02/Building-maintenance-blog.jpg', 'three.jpg')
|
233 |
+
|
234 |
+
# model_path = ('runs/best.pt')
|
235 |
+
# model = YOLO(model_path)
|
236 |
+
|
237 |
+
# def predict(input_image):
|
238 |
+
# try:
|
239 |
+
# # Perform inference
|
240 |
+
# results = model(input_image, size=(1024, 768), augment=True)
|
241 |
+
|
242 |
+
# # Convert result image with bounding boxes to PIL format for Gradio output
|
243 |
+
# result_image = Image.fromarray(results.render()[0])
|
244 |
+
|
245 |
+
# return result_image
|
246 |
+
|
247 |
+
# except Exception as e:
|
248 |
+
# return f"Error: {str(e)}"
|
249 |
+
|
250 |
+
# # Set up Gradio interface
|
251 |
+
# interface = gr.Interface(
|
252 |
+
# fn=predict,
|
253 |
+
# inputs=gr.inputs.Image(type="pil", label="Upload an Image1"),
|
254 |
+
# outputs=gr.outputs.Image(type="pil", label="Result1"),
|
255 |
+
# #css = css,
|
256 |
+
# title="Object Detection using YOLOv8 - NEW MODEL 2024",
|
257 |
+
# description="Upload an image to detect objects using the YOLOv8 model"
|
258 |
+
# )
|
259 |
+
# interface.launch()
|
best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c0c102143d76641779e797f2c49b289cec0d534a66ca99d9c101d656770acb5
|
3 |
+
size 6280494
|
runs/best.pt
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:0c0c102143d76641779e797f2c49b289cec0d534a66ca99d9c101d656770acb5
|
3 |
+
size 6280494
|