File size: 7,351 Bytes
712d86b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
import streamlit as st
import pandas as pd
import requests
from bs4 import BeautifulSoup
import csv
from transformers import pipeline
# from transformers import PegasusTokenizer, PegasusForConditionalGeneration, TFPegasusForConditionalGeneration

# Text sumamrization model
summarizer = pipeline("summarization", model="sshleifer/distilbart-cnn-12-6")



def scrape_dawn():
    url = 'https://www.dawn.com/business'
    response = requests.get(url, verify=False)
    soup = BeautifulSoup(response.text, 'html.parser')
    articles = []

    count = 0  # Counter to track the number of articles scraped

    for item in soup.find_all('article', class_='story'):
        if count >= 5:  # Stop after 10 articles
            break

        title_tag = item.find('h2', class_='story__title')
        if title_tag:
            title = title_tag.get_text(strip=True)
            link = title_tag.find('a')['href']
            full_text = get_full_article_dawn(link)
            # Summarize the full article
            summary_obj = summarizer(full_text[:1020])

            # Convert the summary object to a string
            summary = summary_obj[0]['summary_text'] if summary_obj else ""
            articles.append({'title': title, 'link': link, 'content': full_text, 'summary': summary})

            count += 1  # Increment the counter

    return articles

# Function to get the full text of an article from Dawn
def get_full_article_dawn(url):
    response = requests.get(url, verify = False)
    soup = BeautifulSoup(response.text, 'html.parser')
    content_div = soup.find('div', class_='story__content')
    if content_div:
        paragraphs = content_div.find_all('p')
        full_text = ' '.join([para.get_text(strip=True) for para in paragraphs])
        return full_text
    return "Content not found."


# Function to scrape articles from Business Recorder
def scrape_brecorder():
    url = 'https://www.brecorder.com/business-finance'
    response = requests.get(url, verify=False)
    soup = BeautifulSoup(response.text, 'html.parser')
    articles = []
    count = 0  # Counter to track the number of articles scraped

    for item in soup.find_all('article', class_='story'):
        if count >= 5:  # Stop after 10 articles
            break

        title_tag = item.find('h2', class_='story__title')
        if title_tag:
            title = title_tag.get_text(strip=True)
            link = title_tag.find('a')['href']
            full_text = get_full_article_brecorder(link)
            # Summarize the full article
            summary_obj = summarizer(full_text[:1020])

            # Convert the summary object to a string
            summary = summary_obj[0]['summary_text'] if summary_obj else ""
            articles.append({'title': title, 'link': link, 'content': full_text, 'summary': summary})

            count += 1  # Increment the counter

    return articles

# Function to get the full text of an article from Business Recorder
def get_full_article_brecorder(url):
    response = requests.get(url, verify = False)
    soup = BeautifulSoup(response.text, 'html.parser')
    content_div = soup.find('div', class_='story__content')
    if content_div:
        paragraphs = content_div.find_all(['p', 'li'])
        full_text = ' '.join([para.get_text(strip=True) for para in paragraphs])
        return full_text
    return "Content not found."

#
# def scrape_tnews():
#     url = 'https://www.thenews.com.pk/latest/category/business'
#     response = requests.get(url, verify=False)
#     soup = BeautifulSoup(response.text, 'html.parser')
#     articles = []
#
#     count = 0  # Counter to track the number of articles scraped
#
#     for item in soup.find_all('div', class_='most-popular-box'):
#         if count >= 2:  # Stop after 10 articles
#             break
#
#         title_tag = item.find('h2', class_='most-popular-list')
#         if title_tag:
#             title = title_tag.get_text(strip=True)
#             link = title_tag.find('a')['href']
#             full_text = get_full_article_tnews(link)
#             # Summarize the full article
#             summary_obj = summarizer(full_text[:1020])
#
#             # Convert the summary object to a string
#             summary = summary_obj[0]['summary_text'] if summary_obj else ""
#             articles.append({'title': title, 'link': link, 'content': full_text, 'summary': summary})
#
#             count += 1  # Increment the counter
#
#     return articles


def scrape_tnews():
    url = 'https://www.thenews.com.pk/latest/category/business'
    response = requests.get(url, verify=False)
    soup = BeautifulSoup(response.text, 'html.parser')
    articles = []

    count = 0  # Counter to track the number of articles scraped

    for item in soup.find_all('div', class_='most-popular-box'):
        if count >= 5:  # Stop after 2 articles
            break

        # Extract the title from the <h2> tag
        title_tag = item.find('h2')
        if title_tag:
            title = title_tag.get_text(strip=True)

            # Extract the link from the <a> tag inside <h2>
            link = item.find('a')['href']

            # Fetch and process full article text (you should define get_full_article_tnews)
            full_text = get_full_article_tnews(link)

            # Summarize the full article (you should define summarizer)
            summary_obj = summarizer(full_text[:1020])
            summary = summary_obj[0]['summary_text'] if summary_obj else ""

            # Append the article details
            articles.append({'title': title, 'link': link, 'content': full_text, 'summary': summary})


            count += 1  # Increment the counter

    return articles


def get_full_article_tnews(url):
    response = requests.get(url, verify = False)
    soup = BeautifulSoup(response.text, 'html.parser')
    content_div = soup.find('div', class_='detail-content')
    if content_div:
        paragraphs = content_div.find_all(['p', 'li'])
        full_text = ' '.join([para.get_text(strip=True) for para in paragraphs])
        return full_text
    return "Content not found."

# Function to save articles to a CSV file
def save_to_csv(filename, articles):
    if not articles:
        print(f"No articles found to save in {filename}.")
        return
    keys = articles[0].keys()
    with open(filename, 'w', newline='', encoding='utf-8') as output_file:
        dict_writer = csv.DictWriter(output_file, fieldnames=keys)
        dict_writer.writeheader()
        dict_writer.writerows(articles)


# # Main function to scrape articles from both Dawn and Business Recorder, and save to CSV
# def main():
#     # Scraping articles from Dawn
#     dawn_articles = scrape_tnews()
#     save_to_csv('tnews_articles_full.csv', dawn_articles)
#     print("tnews articles saved to CSV file successfully.")
#
#     # Scraping articles from Business Recorder
#     # brecorder_articles = scrape_brecorder()
#     # save_to_csv('brecorder_articles_full.csv', brecorder_articles)
#     # print("Business Recorder articles saved to CSV file successfully.")
#
#
# if __name__ == '__main__':
#     main()

# url = 'https://www.thenews.com.pk/latest/category/business'
# response = requests.get(url, verify=False)
# soup = BeautifulSoup(response.text, 'html.parser')
# s = soup.find_all('div', class_='most-popular-box')
# print(s)