|
import gradio as gr |
|
import os |
|
api_token = os.getenv("HF_TOKEN") |
|
|
|
|
|
from langchain_community.vectorstores import FAISS |
|
from langchain_community.document_loaders import PyPDFLoader |
|
from langchain.text_splitter import RecursiveCharacterTextSplitter |
|
from langchain_community.vectorstores import Chroma |
|
from langchain.chains import ConversationalRetrievalChain |
|
from langchain_community.embeddings import HuggingFaceEmbeddings |
|
from langchain_community.llms import HuggingFacePipeline |
|
from langchain.chains import ConversationChain |
|
from langchain.memory import ConversationBufferMemory |
|
from langchain_community.llms import HuggingFaceEndpoint |
|
import torch |
|
|
|
list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"] |
|
list_llm_simple = [os.path.basename(llm) for llm in list_llm] |
|
|
|
|
|
def load_doc(list_file_path): |
|
|
|
|
|
|
|
loaders = [PyPDFLoader(x) for x in list_file_path] |
|
pages = [] |
|
for loader in loaders: |
|
pages.extend(loader.load()) |
|
text_splitter = RecursiveCharacterTextSplitter( |
|
chunk_size = 1024, |
|
chunk_overlap = 64 |
|
) |
|
doc_splits = text_splitter.split_documents(pages) |
|
return doc_splits |
|
|
|
|
|
def create_db(splits): |
|
embeddings = HuggingFaceEmbeddings() |
|
vectordb = FAISS.from_documents(splits, embeddings) |
|
return vectordb |
|
|
|
|
|
|
|
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct": |
|
llm = HuggingFaceEndpoint( |
|
repo_id=llm_model, |
|
huggingfacehub_api_token = api_token, |
|
temperature = temperature, |
|
max_new_tokens = max_tokens, |
|
top_k = top_k, |
|
) |
|
else: |
|
llm = HuggingFaceEndpoint( |
|
huggingfacehub_api_token = api_token, |
|
repo_id=llm_model, |
|
temperature = temperature, |
|
max_new_tokens = max_tokens, |
|
top_k = top_k, |
|
) |
|
|
|
memory = ConversationBufferMemory( |
|
memory_key="chat_history", |
|
output_key='answer', |
|
return_messages=True |
|
) |
|
|
|
retriever=vector_db.as_retriever() |
|
qa_chain = ConversationalRetrievalChain.from_llm( |
|
llm, |
|
retriever=retriever, |
|
chain_type="stuff", |
|
memory=memory, |
|
return_source_documents=True, |
|
verbose=False, |
|
) |
|
return qa_chain |
|
|
|
|
|
def initialize_database(list_file_obj, progress=gr.Progress()): |
|
|
|
list_file_path = [x.name for x in list_file_obj if x is not None] |
|
|
|
doc_splits = load_doc(list_file_path) |
|
|
|
vector_db = create_db(doc_splits) |
|
return vector_db, "Database created!" |
|
|
|
|
|
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()): |
|
|
|
llm_name = list_llm[llm_option] |
|
print("llm_name: ",llm_name) |
|
qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress) |
|
return qa_chain, "QA chain initialized. Chatbot is ready!" |
|
|
|
|
|
def format_chat_history(message, chat_history): |
|
formatted_chat_history = [] |
|
for user_message, bot_message in chat_history: |
|
formatted_chat_history.append(f"User: {user_message}") |
|
formatted_chat_history.append(f"Assistant: {bot_message}") |
|
return formatted_chat_history |
|
|
|
|
|
def conversation(qa_chain, message, history): |
|
formatted_chat_history = format_chat_history(message, history) |
|
|
|
response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history}) |
|
response_answer = response["answer"] |
|
if response_answer.find("Helpful Answer:") != -1: |
|
response_answer = response_answer.split("Helpful Answer:")[-1] |
|
response_sources = response["source_documents"] |
|
response_source1 = response_sources[0].page_content.strip() |
|
response_source2 = response_sources[1].page_content.strip() |
|
response_source3 = response_sources[2].page_content.strip() |
|
|
|
response_source1_page = response_sources[0].metadata["page"] + 1 |
|
response_source2_page = response_sources[1].metadata["page"] + 1 |
|
response_source3_page = response_sources[2].metadata["page"] + 1 |
|
|
|
new_history = history + [(message, response_answer)] |
|
return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page |
|
|
|
|
|
def upload_file(file_obj): |
|
list_file_path = [] |
|
for idx, file in enumerate(file_obj): |
|
file_path = file_obj.name |
|
list_file_path.append(file_path) |
|
return list_file_path |
|
|
|
|
|
def demo(): |
|
with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo: |
|
vector_db = gr.State() |
|
qa_chain = gr.State() |
|
gr.HTML("<center><h1>RAG PDF chatbot</h1><center>") |
|
gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \ |
|
<b>Please do not upload confidential documents.</b> |
|
""") |
|
with gr.Row(): |
|
with gr.Column(scale = 86): |
|
gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>") |
|
with gr.Row(): |
|
document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents") |
|
with gr.Row(): |
|
db_btn = gr.Button("Create vector database") |
|
with gr.Row(): |
|
db_progress = gr.Textbox(value="Not initialized", show_label=False) |
|
gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>") |
|
with gr.Row(): |
|
llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") |
|
with gr.Row(): |
|
with gr.Accordion("LLM input parameters", open=False): |
|
with gr.Row(): |
|
slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True) |
|
with gr.Row(): |
|
slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True) |
|
with gr.Row(): |
|
slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True) |
|
with gr.Row(): |
|
qachain_btn = gr.Button("Initialize Question Answering Chatbot") |
|
with gr.Row(): |
|
llm_progress = gr.Textbox(value="Not initialized", show_label=False) |
|
|
|
with gr.Column(scale = 200): |
|
gr.Markdown("<b>Step 2 - Chat with your Document</b>") |
|
chatbot = gr.Chatbot(height=505) |
|
with gr.Accordion("Relevent context from the source document", open=False): |
|
with gr.Row(): |
|
doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20) |
|
source1_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20) |
|
source2_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20) |
|
source3_page = gr.Number(label="Page", scale=1) |
|
with gr.Row(): |
|
msg = gr.Textbox(placeholder="Ask a question", container=True) |
|
with gr.Row(): |
|
submit_btn = gr.Button("Submit") |
|
clear_btn = gr.ClearButton([msg, chatbot], value="Clear") |
|
|
|
|
|
db_btn.click(initialize_database, \ |
|
inputs=[document], \ |
|
outputs=[vector_db, db_progress]) |
|
qachain_btn.click(initialize_LLM, \ |
|
inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \ |
|
outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \ |
|
inputs=None, \ |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ |
|
queue=False) |
|
|
|
|
|
msg.submit(conversation, \ |
|
inputs=[qa_chain, msg, chatbot], \ |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ |
|
queue=False) |
|
submit_btn.click(conversation, \ |
|
inputs=[qa_chain, msg, chatbot], \ |
|
outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ |
|
queue=False) |
|
clear_btn.click(lambda:[None,"",0,"",0,"",0], \ |
|
inputs=None, \ |
|
outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \ |
|
queue=False) |
|
demo.queue().launch(debug=True) |
|
|
|
|
|
if __name__ == "__main__": |
|
demo() |