File size: 10,170 Bytes
58486c5
43ac004
 
 
7883913
43ac004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a5c9a00
 
43ac004
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
74f5196
43ac004
 
 
 
 
 
 
 
 
 
 
 
 
 
cb8f33a
 
43ac004
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import gradio as gr
import os
api_token = os.getenv("HF_TOKEN")


from langchain_community.vectorstores import FAISS
from langchain_community.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.vectorstores import Chroma
from langchain.chains import ConversationalRetrievalChain
from langchain_community.embeddings import HuggingFaceEmbeddings 
from langchain_community.llms import HuggingFacePipeline
from langchain.chains import ConversationChain
from langchain.memory import ConversationBufferMemory
from langchain_community.llms import HuggingFaceEndpoint
import torch

list_llm = ["meta-llama/Meta-Llama-3-8B-Instruct", "mistralai/Mistral-7B-Instruct-v0.2"]  
list_llm_simple = [os.path.basename(llm) for llm in list_llm]

# Load and split PDF document
def load_doc(list_file_path):
    # Processing for one document only
    # loader = PyPDFLoader(file_path)
    # pages = loader.load()
    loaders = [PyPDFLoader(x) for x in list_file_path]
    pages = []
    for loader in loaders:
        pages.extend(loader.load())
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size = 1024, 
        chunk_overlap = 64 
    )  
    doc_splits = text_splitter.split_documents(pages)
    return doc_splits

# Create vector database
def create_db(splits):
    embeddings = HuggingFaceEmbeddings()
    vectordb = FAISS.from_documents(splits, embeddings)
    return vectordb


# Initialize langchain LLM chain
def initialize_llmchain(llm_model, temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    if llm_model == "meta-llama/Meta-Llama-3-8B-Instruct":
        llm = HuggingFaceEndpoint(
            repo_id=llm_model,
            huggingfacehub_api_token = api_token,
            temperature = temperature,
            max_new_tokens = max_tokens,
            top_k = top_k,
        )
    else:
        llm = HuggingFaceEndpoint(
            huggingfacehub_api_token = api_token,
            repo_id=llm_model, 
            temperature = temperature,
            max_new_tokens = max_tokens,
            top_k = top_k,
        )
    
    memory = ConversationBufferMemory(
        memory_key="chat_history",
        output_key='answer',
        return_messages=True
    )

    retriever=vector_db.as_retriever()
    qa_chain = ConversationalRetrievalChain.from_llm(
        llm,
        retriever=retriever,
        chain_type="stuff", 
        memory=memory,
        return_source_documents=True,
        verbose=False,
    )
    return qa_chain

# Initialize database
def initialize_database(list_file_obj, progress=gr.Progress()):
    # Create a list of documents (when valid)
    list_file_path = [x.name for x in list_file_obj if x is not None]
    # Load document and create splits
    doc_splits = load_doc(list_file_path)
    # Create or load vector database
    vector_db = create_db(doc_splits)
    return vector_db, "Database created!"

# Initialize LLM
def initialize_LLM(llm_option, llm_temperature, max_tokens, top_k, vector_db, progress=gr.Progress()):
    # print("llm_option",llm_option)
    llm_name = list_llm[llm_option]
    print("llm_name: ",llm_name)
    qa_chain = initialize_llmchain(llm_name, llm_temperature, max_tokens, top_k, vector_db, progress)
    return qa_chain, "QA chain initialized. Chatbot is ready!"


def format_chat_history(message, chat_history):
    formatted_chat_history = []
    for user_message, bot_message in chat_history:
        formatted_chat_history.append(f"User: {user_message}")
        formatted_chat_history.append(f"Assistant: {bot_message}")
    return formatted_chat_history
    

def conversation(qa_chain, message, history):
    formatted_chat_history = format_chat_history(message, history)
    # Generate response using QA chain
    response = qa_chain.invoke({"question": message, "chat_history": formatted_chat_history})
    response_answer = response["answer"]
    if response_answer.find("Helpful Answer:") != -1:
        response_answer = response_answer.split("Helpful Answer:")[-1]
    response_sources = response["source_documents"]
    response_source1 = response_sources[0].page_content.strip()
    response_source2 = response_sources[1].page_content.strip()
    response_source3 = response_sources[2].page_content.strip()
    # Langchain sources are zero-based
    response_source1_page = response_sources[0].metadata["page"] + 1
    response_source2_page = response_sources[1].metadata["page"] + 1
    response_source3_page = response_sources[2].metadata["page"] + 1
    # Append user message and response to chat history
    new_history = history + [(message, response_answer)]
    return qa_chain, gr.update(value=""), new_history, response_source1, response_source1_page, response_source2, response_source2_page, response_source3, response_source3_page
    

def upload_file(file_obj):
    list_file_path = []
    for idx, file in enumerate(file_obj):
        file_path = file_obj.name
        list_file_path.append(file_path)
    return list_file_path


def demo():
    # with gr.Blocks(theme=gr.themes.Default(primary_hue="sky")) as demo:
    with gr.Blocks(theme=gr.themes.Default(primary_hue="red", secondary_hue="pink", neutral_hue = "sky")) as demo:
        vector_db = gr.State()
        qa_chain = gr.State()
        gr.HTML("<center><h1>RAG PDF chatbot</h1><center>")
        gr.Markdown("""<b>Query your PDF documents!</b> This AI agent is designed to perform retrieval augmented generation (RAG) on PDF documents. The app is hosted on Hugging Face Hub for the sole purpose of demonstration. \
        <b>Please do not upload confidential documents.</b>
        """)
        with gr.Row():
            with gr.Column(scale = 86):
                gr.Markdown("<b>Step 1 - Upload PDF documents and Initialize RAG pipeline</b>")
                with gr.Row():
                    document = gr.Files(height=300, file_count="multiple", file_types=["pdf"], interactive=True, label="Upload PDF documents")
                with gr.Row():
                    db_btn = gr.Button("Create vector database")
                with gr.Row():
                        db_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Vector database status", 
                gr.Markdown("<style>body { font-size: 16px; }</style><b>Select Large Language Model (LLM) and input parameters</b>")
                with gr.Row():
                    llm_btn = gr.Radio(list_llm_simple, label="Available LLMs", value = list_llm_simple[0], type="index") # info="Select LLM", show_label=False
                with gr.Row():
                    with gr.Accordion("LLM input parameters", open=False):
                        with gr.Row():
                            slider_temperature = gr.Slider(minimum = 0.01, maximum = 1.0, value=0.5, step=0.1, label="Temperature", info="Controls randomness in token generation", interactive=True)
                        with gr.Row():
                            slider_maxtokens = gr.Slider(minimum = 128, maximum = 9192, value=4096, step=128, label="Max New Tokens", info="Maximum number of tokens to be generated",interactive=True)
                        with gr.Row():
                                slider_topk = gr.Slider(minimum = 1, maximum = 10, value=3, step=1, label="top-k", info="Number of tokens to select the next token from", interactive=True)
                with gr.Row():
                    qachain_btn = gr.Button("Initialize Question Answering Chatbot")
                with gr.Row():
                        llm_progress = gr.Textbox(value="Not initialized", show_label=False) # label="Chatbot status", 

            with gr.Column(scale = 200):
                gr.Markdown("<b>Step 2 - Chat with your Document</b>")
                chatbot = gr.Chatbot(height=505)
                with gr.Accordion("Relevent context from the source document", open=False):
                    with gr.Row():
                        doc_source1 = gr.Textbox(label="Reference 1", lines=2, container=True, scale=20)
                        source1_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source2 = gr.Textbox(label="Reference 2", lines=2, container=True, scale=20)
                        source2_page = gr.Number(label="Page", scale=1)
                    with gr.Row():
                        doc_source3 = gr.Textbox(label="Reference 3", lines=2, container=True, scale=20)
                        source3_page = gr.Number(label="Page", scale=1)
                with gr.Row():
                    msg = gr.Textbox(placeholder="Ask a question", container=True)
                with gr.Row():
                    submit_btn = gr.Button("Submit")
                    clear_btn = gr.ClearButton([msg, chatbot], value="Clear")
            
        # Preprocessing events
        db_btn.click(initialize_database, \
            inputs=[document], \
            outputs=[vector_db, db_progress])
        qachain_btn.click(initialize_LLM, \
            inputs=[llm_btn, slider_temperature, slider_maxtokens, slider_topk, vector_db], \
            outputs=[qa_chain, llm_progress]).then(lambda:[None,"",0,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)

        # Chatbot events
        msg.submit(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
        submit_btn.click(conversation, \
            inputs=[qa_chain, msg, chatbot], \
            outputs=[qa_chain, msg, chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
        clear_btn.click(lambda:[None,"",0,"",0,"",0], \
            inputs=None, \
            outputs=[chatbot, doc_source1, source1_page, doc_source2, source2_page, doc_source3, source3_page], \
            queue=False)
    demo.queue().launch(debug=True)


if __name__ == "__main__":
    demo()