PGA_DFS_models / app.py
James McCool
Refactor app.py to replace Google Sheets integration with MongoDB. Removed gspread and related credentials, added pymongo for database connection. Updated data retrieval methods to fetch data from MongoDB collections. Adjusted UI elements and cleaned up unused code.
3d00450
raw
history blame
2.5 kB
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import numpy as np
import pandas as pd
import streamlit as st
import gc
import pymongo
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["PGA_Database"]
return db
db = init_conn()
dk_player_url = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
CSV_URL = 'https://docs.google.com/spreadsheets/d/1lMLxWdvCnOFBtG9dhM0zv2USuxZbkogI_2jnxFfQVVs/edit#gid=1828092624'
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '100+%': '{:.2%}', '10x%': '{:.2%}', '11x%': '{:.2%}',
'12x%': '{:.2%}','LevX': '{:.2%}'}
@st.cache_resource(ttl = 600)
def init_baselines():
collection = db["PGA_Range_of_Outcomes"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
data_cols = player_frame.columns.drop('Player')
player_frame[data_cols] = player_frame[data_cols].apply(pd.to_numeric, errors='coerce')
roo_data = player_frame
return roo_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
roo_data = init_baselines()
hold_display = roo_data
lineup_display = []
check_list = []
rand_player = 0
boost_player = 0
salaryCut = 0
tab1, tab2 = st.tabs(["Player Overall Projections", "Not Ready Yet"])
with tab1:
if st.button("Reset Data", key='reset1'):
# Clear values from *all* all in-memory and on-disk data caches:
# i.e. clear values from both square and cube
st.cache_data.clear()
roo_data = init_baselines()
hold_display = roo_data
lineup_display = []
check_list = []
rand_player = 0
boost_player = 0
salaryCut = 0
hold_container = st.empty()
display = hold_display.set_index('Player')
st.dataframe(display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), height=750, use_container_width = True)
st.download_button(
label="Export Projections",
data=convert_df_to_csv(display),
file_name='PGA_DFS_export.csv',
mime='text/csv',
)
with tab2:
st.write("Not Ready Yet")