NHL_DFS_ROO / app.py
James McCool
Add salary range filter to player data display in app.py
c863cc1
raw
history blame
8.3 kB
import streamlit as st
st.set_page_config(layout="wide")
for name in dir():
if not name.startswith('_'):
del globals()[name]
import pulp
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
from itertools import combinations
@st.cache_resource
def init_conn():
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NHL_Database"]
return db
db = init_conn()
player_roo_format = {'Top_finish': '{:.2%}','Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '2x%': '{:.2%}', '3x%': '{:.2%}',
'4x%': '{:.2%}'}
@st.cache_resource(ttl=200)
def player_stat_table():
collection = db["Player_Level_ROO"]
cursor = collection.find()
player_frame = pd.DataFrame(cursor)
player_frame = player_frame[['Player', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '2x%', '3x%', '4x%', 'Own',
'Small Field Own%', 'Large Field Own%', 'Cash Own%', 'CPT_Own', 'Site', 'Type', 'Slate', 'player_id', 'timestamp']]
collection = db["Player_Lines_ROO"]
cursor = collection.find()
line_frame = pd.DataFrame(cursor)
line_frame = line_frame[['Player', 'SK1', 'SK2', 'SK3', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '50+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]
collection = db["Player_Powerplay_ROO"]
cursor = collection.find()
pp_frame = pd.DataFrame(cursor)
pp_frame = pp_frame[['Player', 'SK1', 'SK2', 'SK3', 'SK4', 'SK5', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '75+%', '2x%', '3x%', '4x%', 'Own', 'Site', 'Type', 'Slate']]
timestamp = player_frame['timestamp'].values[0]
return player_frame, line_frame, pp_frame, timestamp
@st.cache_data
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2, tab3 = st.tabs(["Player Range of Outcomes", "Line Combo Range of Outcomes", "Power Play Range of Outcomes"])
with tab1:
col1, col2 = st.columns([1, 7])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
site_var1 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var1')
main_var1 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var1')
split_var1 = st.radio("Would you like to view the whole slate or just specific games?", ('Full Slate Run', 'Specific Games'), key='split_var1')
if split_var1 == 'Specific Games':
team_var1 = st.multiselect('Which teams would you like to include in the ROO?', options = player_frame['Team'].unique(), key='team_var1')
elif split_var1 == 'Full Slate Run':
team_var1 = player_frame.Team.values.tolist()
pos_split1 = st.radio("Are you viewing all positions, specific groups, or specific positions?", ('All Positions', 'Specific Positions'), key='pos_split1')
if pos_split1 == 'Specific Positions':
pos_var1 = st.multiselect('What Positions would you like to view?', options = ['C', 'W', 'D', 'G'])
elif pos_split1 == 'All Positions':
pos_var1 = 'All'
sal_var1 = st.slider("Is there a certain price range you want to view?", 2000, 10000, (2000, 20000), key='sal_var1')
with col2:
final_Proj = player_frame[player_frame['Site'] == str(site_var1)]
final_Proj = final_Proj[final_Proj['Type'] == 'Basic']
final_Proj = final_Proj[final_Proj['Slate'] == main_var1]
final_Proj = final_Proj[player_frame['Team'].isin(team_var1)]
final_Proj = final_Proj[final_Proj['Salary'] >= sal_var1[0]]
final_Proj = final_Proj[final_Proj['Salary'] <= sal_var1[1]]
if pos_var1 != 'All':
final_Proj = final_Proj[final_Proj['Position'].str.contains('|'.join(pos_var1))]
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
if pos_var1 == 'All':
final_Proj = final_Proj.sort_values(by='Median', ascending=False)
st.dataframe(final_Proj.iloc[:, :-3].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(player_roo_format, precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_Proj),
file_name='NHL_player_export.csv',
mime='text/csv',
)
with tab2:
col1, col2 = st.columns([1, 7])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
site_var2 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var2')
main_var2 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var2')
sal_var2 = st.slider("Is there a certain price range you want to view?", 5000, 25000, (5000, 25000), key='sal_var2')
with col2:
final_line_combos = line_frame[line_frame['Site'] == str(site_var2)]
final_line_combos = final_line_combos[final_line_combos['Type'] == 'Basic']
final_line_combos = final_line_combos[final_line_combos['Slate'] == main_var2]
final_line_combos = final_line_combos[final_line_combos['Salary'] >= sal_var2[0]]
final_line_combos = final_line_combos[final_line_combos['Salary'] <= sal_var2[1]]
final_line_combos = final_line_combos.drop_duplicates(subset=['Player'])
final_line_combos = final_line_combos.sort_values(by='Median', ascending=False)
st.dataframe(final_line_combos.iloc[:, :-3].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_line_combos),
file_name='NHL_linecombos_export.csv',
mime='text/csv',
)
with tab3:
col1, col2 = st.columns([1, 7])
with col1:
st.info(t_stamp)
if st.button("Load/Reset Data", key='reset3'):
st.cache_data.clear()
player_frame, line_frame, pp_frame, timestamp = player_stat_table()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
site_var3 = st.radio("What table would you like to display?", ('Draftkings', 'Fanduel'), key='site_var3')
main_var3 = st.radio("Main slate or secondary slate?", ('Main Slate', 'Secondary Slate'), key='main_var3')
sal_var3 = st.slider("Is there a certain price range you want to view?", 5000, 30000, (5000, 30000), key='sal_var3')
with col2:
final_pp_combos = pp_frame[pp_frame['Site'] == str(site_var3)]
final_pp_combos = final_pp_combos[final_pp_combos['Type'] == 'Basic']
final_pp_combos = final_pp_combos[final_pp_combos['Slate'] == main_var3]
final_pp_combos = final_pp_combos[final_pp_combos['Salary'] >= sal_var3[0]]
final_pp_combos = final_pp_combos[final_pp_combos['Salary'] <= sal_var3[1]]
final_pp_combos = final_pp_combos.drop_duplicates(subset=['Player'])
final_pp_combos = final_pp_combos.sort_values(by='Median', ascending=False)
st.dataframe(final_pp_combos.iloc[:, :-3].style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), use_container_width = True)
st.download_button(
label="Export Tables",
data=convert_df_to_csv(final_pp_combos),
file_name='NHL_powerplay_export.csv',
mime='text/csv',
)