Spaces:
Running
Running
James McCool
commited on
Commit
·
f48225e
1
Parent(s):
95055fb
Refactor app.py to update 'over_adj' and 'under_adj' calculations by replacing division by 100 with a conditional adjustment using np_where. This change ensures that adjustments are capped at 0.10, improving the accuracy and reliability of player projections based on the relationship between 'Mean_Outcome' and 'Prop'.
Browse files
app.py
CHANGED
@@ -288,8 +288,8 @@ with tab3:
|
|
288 |
players_only['Book'] = players_only['Player'].map(book_dict)
|
289 |
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
290 |
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
291 |
-
players_only['over_adj'] = ((players_only['Mean_Outcome'] / players_only['Prop']) - 1
|
292 |
-
players_only['under_adj'] = ((players_only['Prop'] / players_only['Mean_Outcome']) - 1
|
293 |
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
294 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
295 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
@@ -418,8 +418,8 @@ with tab3:
|
|
418 |
players_only['Book'] = players_only['Player'].map(book_dict)
|
419 |
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
420 |
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
421 |
-
players_only['over_adj'] = ((players_only['Mean_Outcome'] / players_only['Prop']) - 1
|
422 |
-
players_only['under_adj'] = ((players_only['Prop'] / players_only['Mean_Outcome']) - 1
|
423 |
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
424 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
425 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
|
|
288 |
players_only['Book'] = players_only['Player'].map(book_dict)
|
289 |
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
290 |
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
291 |
+
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] / players_only['Prop']) - 1 > .10, .10, (players_only['Mean_Outcome'] / players_only['Prop']) - 1)
|
292 |
+
players_only['under_adj'] = np_where((players_only['Prop'] / players_only['Mean_Outcome']) - 1 > .10, .10, (players_only['Prop'] / players_only['Mean_Outcome']) - 1)
|
293 |
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
294 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
295 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
|
|
418 |
players_only['Book'] = players_only['Player'].map(book_dict)
|
419 |
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
420 |
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
421 |
+
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] / players_only['Prop']) - 1 > .10, .10, (players_only['Mean_Outcome'] / players_only['Prop']) - 1)
|
422 |
+
players_only['under_adj'] = np_where((players_only['Prop'] / players_only['Mean_Outcome']) - 1 > .10, .10, (players_only['Prop'] / players_only['Mean_Outcome']) - 1)
|
423 |
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
424 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
425 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|