Spaces:
Running
Running
James McCool
commited on
Commit
·
52027e3
1
Parent(s):
e191cdb
added book objects to a bunch of dataframes
Browse files
app.py
CHANGED
@@ -191,7 +191,7 @@ with tab3:
|
|
191 |
for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
|
192 |
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
|
193 |
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
|
194 |
-
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
195 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
196 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
197 |
st.table(prop_df)
|
@@ -200,6 +200,7 @@ with tab3:
|
|
200 |
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
201 |
|
202 |
prop_dict = dict(zip(df.Player, df.Prop))
|
|
|
203 |
over_dict = dict(zip(df.Player, df.Over))
|
204 |
under_dict = dict(zip(df.Player, df.Under))
|
205 |
|
@@ -221,7 +222,7 @@ with tab3:
|
|
221 |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
|
222 |
flex_file['STD'] = (flex_file['Median']/3)
|
223 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
224 |
-
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
225 |
|
226 |
hold_file = flex_file
|
227 |
overall_file = flex_file
|
@@ -232,12 +233,12 @@ with tab3:
|
|
232 |
for x in range(0,total_sims):
|
233 |
prop_file[x] = prop_file['Prop']
|
234 |
|
235 |
-
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
236 |
|
237 |
for x in range(0,total_sims):
|
238 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
239 |
|
240 |
-
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
241 |
|
242 |
players_only = hold_file[['Player']]
|
243 |
|
@@ -255,6 +256,7 @@ with tab3:
|
|
255 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
256 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
257 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
|
|
258 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
259 |
players_only['prop_threshold'] = .10
|
260 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
@@ -269,7 +271,7 @@ with tab3:
|
|
269 |
players_only['Player'] = hold_file[['Player']]
|
270 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
271 |
|
272 |
-
leg_outcomes = players_only[['Player', 'Team', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
273 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
274 |
|
275 |
final_outcomes = sim_all_hold
|
@@ -286,7 +288,7 @@ with tab3:
|
|
286 |
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
|
287 |
if prop_type_var == "SOG":
|
288 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL']
|
289 |
-
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
290 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
291 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
292 |
st.table(prop_df)
|
@@ -296,7 +298,7 @@ with tab3:
|
|
296 |
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
297 |
elif prop_type_var == "points":
|
298 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NHL_GAME_PLAYER_POINTS']
|
299 |
-
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
300 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
301 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
302 |
st.table(prop_df)
|
@@ -306,7 +308,7 @@ with tab3:
|
|
306 |
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
307 |
elif prop_type_var == "assists":
|
308 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NHL_GAME_PLAYER_ASSISTS']
|
309 |
-
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
310 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
311 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
312 |
st.table(prop_df)
|
@@ -316,7 +318,7 @@ with tab3:
|
|
316 |
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
317 |
elif prop_type_var == "blocked_shots":
|
318 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NHL_GAME_PLAYER_BLOCKED_SHOTS']
|
319 |
-
prop_df = prop_df[['Player', 'over_prop', 'over_line', 'under_line']]
|
320 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
321 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
322 |
st.table(prop_df)
|
@@ -327,6 +329,7 @@ with tab3:
|
|
327 |
|
328 |
st.table(df)
|
329 |
prop_dict = dict(zip(df.Player, df.Prop))
|
|
|
330 |
over_dict = dict(zip(df.Player, df.Over))
|
331 |
under_dict = dict(zip(df.Player, df.Under))
|
332 |
|
@@ -348,7 +351,7 @@ with tab3:
|
|
348 |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
|
349 |
flex_file['STD'] = (flex_file['Median']/3)
|
350 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
351 |
-
flex_file = flex_file[['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
352 |
|
353 |
hold_file = flex_file
|
354 |
overall_file = flex_file
|
@@ -359,12 +362,12 @@ with tab3:
|
|
359 |
for x in range(0,total_sims):
|
360 |
prop_file[x] = prop_file['Prop']
|
361 |
|
362 |
-
prop_file = prop_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
363 |
|
364 |
for x in range(0,total_sims):
|
365 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
366 |
|
367 |
-
overall_file=overall_file.drop(['Player', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
368 |
|
369 |
players_only = hold_file[['Player']]
|
370 |
|
@@ -382,6 +385,7 @@ with tab3:
|
|
382 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
383 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
384 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
|
|
385 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
386 |
players_only['prop_threshold'] = .10
|
387 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
@@ -395,7 +399,7 @@ with tab3:
|
|
395 |
players_only['Player'] = hold_file[['Player']]
|
396 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
397 |
|
398 |
-
leg_outcomes = players_only[['Player', 'Team', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
399 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
400 |
|
401 |
final_outcomes = sim_all_hold
|
|
|
191 |
for books in ['FANDUEL', 'DRAFTKINGS', 'BET365', 'CONSENSUS']:
|
192 |
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
|
193 |
prop_df = prop_df.loc[prop_df['prop_type'] == prop]
|
194 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
195 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
196 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
197 |
st.table(prop_df)
|
|
|
200 |
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
201 |
|
202 |
prop_dict = dict(zip(df.Player, df.Prop))
|
203 |
+
book_dict = dict(zip(df.Player, df.book))
|
204 |
over_dict = dict(zip(df.Player, df.Over))
|
205 |
under_dict = dict(zip(df.Player, df.Under))
|
206 |
|
|
|
222 |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
|
223 |
flex_file['STD'] = (flex_file['Median']/3)
|
224 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
225 |
+
flex_file = flex_file[['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD']]
|
226 |
|
227 |
hold_file = flex_file
|
228 |
overall_file = flex_file
|
|
|
233 |
for x in range(0,total_sims):
|
234 |
prop_file[x] = prop_file['Prop']
|
235 |
|
236 |
+
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
237 |
|
238 |
for x in range(0,total_sims):
|
239 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
240 |
|
241 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
242 |
|
243 |
players_only = hold_file[['Player']]
|
244 |
|
|
|
256 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
257 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
258 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
259 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
260 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
261 |
players_only['prop_threshold'] = .10
|
262 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
|
|
271 |
players_only['Player'] = hold_file[['Player']]
|
272 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
273 |
|
274 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop type', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
275 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
276 |
|
277 |
final_outcomes = sim_all_hold
|
|
|
288 |
prop_df = prop_df_raw.loc[prop_df_raw['book'] == books]
|
289 |
if prop_type_var == "SOG":
|
290 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NHL_GAME_PLAYER_SHOTS_ON_GOAL']
|
291 |
+
prop_df = prop_df[['Player', 'book', 'book', 'over_prop', 'over_line', 'under_line']]
|
292 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
293 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
294 |
st.table(prop_df)
|
|
|
298 |
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
299 |
elif prop_type_var == "points":
|
300 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NHL_GAME_PLAYER_POINTS']
|
301 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
302 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
303 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
304 |
st.table(prop_df)
|
|
|
308 |
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
309 |
elif prop_type_var == "assists":
|
310 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NHL_GAME_PLAYER_ASSISTS']
|
311 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
312 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
313 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
314 |
st.table(prop_df)
|
|
|
318 |
df = pd.merge(prop_display, prop_df, how='left', left_on=['Player'], right_on = ['Player'])
|
319 |
elif prop_type_var == "blocked_shots":
|
320 |
prop_df = prop_df.loc[prop_df['prop_type'] == 'NHL_GAME_PLAYER_BLOCKED_SHOTS']
|
321 |
+
prop_df = prop_df[['Player', 'book', 'over_prop', 'over_line', 'under_line']]
|
322 |
prop_df.rename(columns={"over_prop": "Prop"}, inplace = True)
|
323 |
prop_df = prop_df.loc[prop_df['Prop'] != 0]
|
324 |
st.table(prop_df)
|
|
|
329 |
|
330 |
st.table(df)
|
331 |
prop_dict = dict(zip(df.Player, df.Prop))
|
332 |
+
book_dict = dict(zip(df.Player, df.book))
|
333 |
over_dict = dict(zip(df.Player, df.Over))
|
334 |
under_dict = dict(zip(df.Player, df.Under))
|
335 |
|
|
|
351 |
flex_file['Ceiling'] = flex_file['Median'] + (flex_file['Median'] * 1)
|
352 |
flex_file['STD'] = (flex_file['Median']/3)
|
353 |
flex_file['Prop'] = flex_file['Player'].map(prop_dict)
|
354 |
+
flex_file = flex_file[['Player', 'Prop', 'book', 'Floor', 'Median', 'Ceiling', 'STD']]
|
355 |
|
356 |
hold_file = flex_file
|
357 |
overall_file = flex_file
|
|
|
362 |
for x in range(0,total_sims):
|
363 |
prop_file[x] = prop_file['Prop']
|
364 |
|
365 |
+
prop_file = prop_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
366 |
|
367 |
for x in range(0,total_sims):
|
368 |
overall_file[x] = np.random.normal(overall_file['Median'],overall_file['STD'])
|
369 |
|
370 |
+
overall_file=overall_file.drop(['Player', 'book', 'Prop', 'Floor', 'Median', 'Ceiling', 'STD'], axis=1)
|
371 |
|
372 |
players_only = hold_file[['Player']]
|
373 |
|
|
|
385 |
players_only['Imp Under'] = players_only['Player'].map(under_dict)
|
386 |
players_only['Under%'] = players_only[["Under", "Imp Under"]].mean(axis=1)
|
387 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
388 |
+
players_only['Book'] = players_only['Player'].map(book_dict)
|
389 |
players_only['Prop_avg'] = players_only['Prop'].mean() / 100
|
390 |
players_only['prop_threshold'] = .10
|
391 |
players_only = players_only.loc[players_only['Mean_Outcome'] > 0]
|
|
|
399 |
players_only['Player'] = hold_file[['Player']]
|
400 |
players_only['Team'] = players_only['Player'].map(team_dict)
|
401 |
|
402 |
+
leg_outcomes = players_only[['Player', 'Team', 'Book', 'Prop', 'Mean_Outcome', 'Imp Over', 'Over%', 'Imp Under', 'Under%', 'Bet?', 'Edge']]
|
403 |
sim_all_hold = pd.concat([sim_all_hold, leg_outcomes], ignore_index=True)
|
404 |
|
405 |
final_outcomes = sim_all_hold
|