NBA_DFS_ROO / app.py
James McCool
Update tab styling: change background colors for active and hover states to enhance UI consistency
3dbcf03
import streamlit as st
import numpy as np
import pandas as pd
import streamlit as st
import gspread
import pymongo
st.set_page_config(layout="wide")
@st.cache_resource
def init_conn():
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive']
credentials = {
"type": "service_account",
"project_id": "model-sheets-connect",
"private_key_id": st.secrets['model_sheets_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n",
"client_email": "[email protected]",
"client_id": "100369174533302798535",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com"
}
credentials2 = {
"type": "service_account",
"project_id": "sheets-api-connect-378620",
"private_key_id": st.secrets['sheets_api_connect_pk'],
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n",
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com",
"client_id": "106625872877651920064",
"auth_uri": "https://accounts.google.com/o/oauth2/auth",
"token_uri": "https://oauth2.googleapis.com/token",
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs",
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com"
}
uri = st.secrets['mongo_uri']
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client["NBA_DFS"]
NBA_Data = st.secrets['NBA_Data']
gc = gspread.service_account_from_dict(credentials)
gc2 = gspread.service_account_from_dict(credentials2)
return gc, gc2, db, NBA_Data
gcservice_account, gcservice_account2, db, NBA_Data = init_conn()
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']
roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'}
st.markdown("""
<style>
/* Tab styling */
.stTabs [data-baseweb="tab-list"] {
gap: 8px;
padding: 4px;
}
.stTabs [data-baseweb="tab"] {
height: 50px;
white-space: pre-wrap;
background-color: #DAA520;
color: white;
border-radius: 10px;
gap: 1px;
padding: 10px 20px;
font-weight: bold;
transition: all 0.3s ease;
}
.stTabs [aria-selected="true"] {
background-color: #DAA520;
border: 3px solid #FFD700;
color: white;
}
.stTabs [data-baseweb="tab"]:hover {
background-color: #FFD700;
cursor: pointer;
}
</style>""", unsafe_allow_html=True)
@st.cache_data(ttl=60)
def load_overall_stats():
collection = db["DK_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
dk_raw = raw_display.sort_values(by='Median', ascending=False)
collection = db["FD_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
fd_raw = raw_display.sort_values(by='Median', ascending=False)
collection = db["Secondary_DK_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False)
collection = db["Secondary_FD_Player_Stats"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT',
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']]
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"})
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False)
collection = db["Player_Range_Of_Outcomes"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']]
raw_display = raw_display.loc[raw_display['Median'] > 0]
raw_display = raw_display.apply(pd.to_numeric, errors='ignore')
roo_raw = raw_display.sort_values(by='Median', ascending=False)
timestamp = raw_display['timestamp'].values[0]
collection = db["Range_Of_Outcomes_Backlog"]
cursor = collection.find()
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']]
roo_backlog = raw_display.sort_values(by='Date', ascending=False)
roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate']
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog
@st.cache_data(ttl = 60)
def init_DK_lineups():
collection = db['DK_NBA_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["DK_NBA_seed_frame"]
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX']
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
DK_seed = raw_display.to_numpy()
return DK_seed
@st.cache_data(ttl = 60)
def init_FD_lineups():
collection = db['FD_NBA_name_map']
cursor = collection.find()
raw_data = pd.DataFrame(list(cursor))
names_dict = dict(zip(raw_data['key'], raw_data['value']))
collection = db["FD_NBA_seed_frame"]
cursor = collection.find().limit(10000)
raw_display = pd.DataFrame(list(cursor))
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']]
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1']
for col in dict_columns:
raw_display[col] = raw_display[col].map(names_dict)
FD_seed = raw_display.to_numpy()
return FD_seed
def convert_df_to_csv(df):
return df.to_csv().encode('utf-8')
@st.cache_data
def convert_df(array):
array = pd.DataFrame(array, columns=column_names)
return array.to_csv().encode('utf-8')
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary))
try:
dk_lineups = init_DK_lineups()
fd_lineups = init_FD_lineups()
except:
dk_lineups = pd.DataFrame(columns=dk_columns)
fd_lineups = pd.DataFrame(columns=fd_columns)
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals'])
with st.sidebar:
st.header("Quick Builder")
st.info("This is a quick hand building helper to give you some basic info about player combos and lineup feasibility")
sidebar_site = st.selectbox("What site are you running?", ('Draftkings', 'Fanduel'), key='sidebar_site')
sidebar_slate = st.selectbox("What slate are you running?", ('Main Slate', 'Secondary Slate'), key='sidebar_slate')
if sidebar_site == 'Draftkings':
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
roo_sample = roo_sample[roo_sample['site'] == 'Draftkings']
roo_sample = roo_sample.sort_values(by='Own', ascending=False)
selected_pg = []
selected_sg = []
selected_sf = []
selected_pf = []
selected_c = []
selected_g = []
selected_f = []
selected_flex = []
elif sidebar_site == 'Fanduel':
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)]
roo_sample = roo_sample[roo_sample['site'] == 'Fanduel']
roo_sample = roo_sample.sort_values(by='Own', ascending=False)
selected_pg1 = []
selected_pg2 = []
selected_sg1 = []
selected_sg2 = []
selected_sf1 = []
selected_sf2 = []
selected_pf1 = []
selected_pf2 = []
selected_c1 = []
# Get unique players by position from dk_roo_raw
pgs = roo_sample[roo_sample['Position'].str.contains('PG')]['Player'].unique()
sgs = roo_sample[roo_sample['Position'].str.contains('SG')]['Player'].unique()
sfs = roo_sample[roo_sample['Position'].str.contains('SF')]['Player'].unique()
pfs = roo_sample[roo_sample['Position'].str.contains('PF')]['Player'].unique()
centers = roo_sample[roo_sample['Position'].str.contains('C')]['Player'].unique()
guards = roo_sample[roo_sample['Position'].str.contains('G')]['Player'].unique()
forwards = roo_sample[roo_sample['Position'].str.contains('F')]['Player'].unique()
flex = roo_sample['Player'].unique()
if sidebar_site == 'Draftkings':
selected_pgs = st.multiselect('Select PG:', list(pgs), default=None, placeholder='Select PG', label_visibility='collapsed', key='pg1')
selected_sgs = st.multiselect('Select SG:', list(sgs), default=None, placeholder='Select SG', label_visibility='collapsed', key='sg1')
selected_sfs = st.multiselect('Select SF:', list(sfs), default=None, placeholder='Select SF', label_visibility='collapsed', key='sf1')
selected_pfs = st.multiselect('Select PF:', list(pfs), default=None, placeholder='Select PF', label_visibility='collapsed', key='pf1')
selected_cs = st.multiselect('Select C:', list(centers), default=None, placeholder='Select C', label_visibility='collapsed', key='c1')
selected_g = st.multiselect('Select G:', list(guards), default=None, placeholder='Select G', label_visibility='collapsed', key='g')
selected_f = st.multiselect('Select F:', list(forwards), default=None, placeholder='Select F', label_visibility='collapsed', key='f')
selected_flex = st.multiselect('Select Flex:', list(flex), default=None, placeholder='Select Flex', label_visibility='collapsed', key='flex')
# Combine all selected players
all_selected = selected_pgs + selected_sgs + selected_sfs + selected_pfs + selected_cs + selected_g + selected_f + selected_flex
elif sidebar_site == 'Fanduel':
selected_pg1 = st.multiselect('Select PG1:', list(pgs), default=None, placeholder='Select PG1', label_visibility='collapsed', key='pg1')
selected_pg2 = st.multiselect('Select PG2:', list(pgs), default=None, placeholder='Select PG2', label_visibility='collapsed', key='pg2')
selected_sg1 = st.multiselect('Select SG1:', list(sgs), default=None, placeholder='Select SG1', label_visibility='collapsed', key='sg1')
selected_sg2 = st.multiselect('Select SG2:', list(sgs), default=None, placeholder='Select SG2', label_visibility='collapsed', key='sg2')
selected_sf1 = st.multiselect('Select SF1:', list(sfs), default=None, placeholder='Select SF1', label_visibility='collapsed', key='sf1')
selected_sf2 = st.multiselect('Select SF2:', list(sfs), default=None, placeholder='Select SF2', label_visibility='collapsed', key='sf2')
selected_pf1 = st.multiselect('Select PF1:', list(pfs), default=None, placeholder='Select PF1', label_visibility='collapsed', key='pf1')
selected_pf2 = st.multiselect('Select PF2:', list(pfs), default=None, placeholder='Select PF2', label_visibility='collapsed', key='pf2')
selected_c1 = st.multiselect('Select C1:', list(centers), default=None, placeholder='Select C1', label_visibility='collapsed', key='c1')
# Combine all selected players
all_selected = selected_pg1 + selected_pg2 + selected_sg1 + selected_sg2 + selected_sf1 + selected_sf2 + selected_pf1 + selected_pf2 + selected_c1
if all_selected:
# Get stats for selected players
selected_stats = roo_sample[roo_sample['Player'].isin(all_selected)]
# Calculate sums
salary_sum = selected_stats['Salary'].sum()
median_sum = selected_stats['Median'].sum()
own_sum = selected_stats['Own'].sum()
levx_sum = selected_stats['LevX'].sum()
# Display sums
st.write('---')
if sidebar_site == 'Draftkings':
if salary_sum > 50000:
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $50,000')
else:
st.write(f'Total Salary: ${salary_sum:.2f}')
elif sidebar_site == 'Fanduel':
if salary_sum > 60000:
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $60,000')
else:
st.write(f'Total Salary: ${salary_sum:.2f}')
st.write(f'Total Median: {median_sum:.2f}')
st.write(f'Total Ownership: {own_sum:.2f}%')
st.write(f'Total LevX: {levx_sum:.2f}')
with tab1:
with st.expander("Info and Filters"):
with st.container():
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile")
with st.container():
# First row - timestamp and reset button
col1, col2 = st.columns([3, 1])
with col1:
st.info(t_stamp)
with col2:
if st.button("Load/Reset Data", key='reset1'):
st.cache_data.clear()
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID))
dk_lineups = init_DK_lineups()
fd_lineups = init_FD_lineups()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
col1, col2, col3, col4 = st.columns(4)
with col1:
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2')
with col2:
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2')
# Process site selection
if site_var2 == 'Draftkings':
site_baselines = roo_raw[roo_raw['site'] == 'Draftkings']
site_backlog = roo_backlog[roo_backlog['site'] == 'Draftkings']
elif site_var2 == 'Fanduel':
site_baselines = roo_raw[roo_raw['site'] == 'Fanduel']
site_backlog = roo_backlog[roo_backlog['site'] == 'Fanduel']
with col3:
slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary', 'Backlog'), key='slate_split')
if slate_split == 'Main Slate':
raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate']
elif slate_split == 'Secondary':
raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate']
elif slate_split == 'Backlog':
raw_baselines = site_backlog
# Third row - backlog options
col1, col2 = st.columns(2)
with col1:
view_all = st.checkbox("View all dates?", key='view_all')
with col2:
if not view_all:
date_var2 = st.date_input("Select date", key='date_var2')
if view_all:
raw_baselines = raw_baselines.sort_values(by=['Median', 'Date'], ascending=[False, False])
else:
raw_baselines = raw_baselines[raw_baselines['Date'] == date_var2.strftime('%m-%d-%Y')]
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False)
with col4:
split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2')
if split_var2 == 'Specific Games':
team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2')
else:
team_var2 = raw_baselines.Team.values.tolist()
pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2')
col1, col2 = st.columns(2)
with col1:
low_salary = st.number_input('Enter Lowest Salary', min_value=3000, max_value=15000, value=3000, step=100, key='low_salary')
with col2:
high_salary = st.number_input('Enter Highest Salary', min_value=3000, max_value=15000, value=15000, step=100, key='high_salary')
display_container_1 = st.empty()
display_dl_container_1 = st.empty()
display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)]
display_proj = display_proj[display_proj['Salary'].between(low_salary, high_salary)]
if view_var2 == 'Advanced':
display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%',
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']]
elif view_var2 == 'Simple':
display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']]
export_data = display_proj.copy()
# display_proj = display_proj.set_index('Player')
st.session_state.display_proj = display_proj
with display_container_1:
display_container = st.empty()
if 'display_proj' in st.session_state:
if pos_var2 == 'All':
st.session_state.display_proj = st.session_state.display_proj
elif pos_var2 != 'All':
st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)]
st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), height=1000, use_container_width = True, hide_index=True)
with display_dl_container_1:
display_dl_container = st.empty()
if 'display_proj' in st.session_state:
st.download_button(
label="Export Tables",
data=convert_df_to_csv(export_data),
file_name='NBA_ROO_export.csv',
mime='text/csv',
)
with tab2:
with st.expander("Info and Filters"):
if st.button("Load/Reset Data", key='reset2'):
st.cache_data.clear()
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats()
dk_lineups = init_DK_lineups()
fd_lineups = init_FD_lineups()
t_stamp = f"Last Update: " + str(timestamp) + f" CST"
for key in st.session_state.keys():
del st.session_state[key]
col1, col2, col3, col4, col5 = st.columns(5)
with col1:
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate'))
with col2:
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel'))
with col3:
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1)
with col4:
if site_var1 == 'Draftkings':
raw_baselines = dk_raw
ROO_slice = roo_raw[roo_raw['site'] == 'Draftkings']
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
# Get the minimum and maximum ownership values from dk_lineups
min_own = np.min(dk_lineups[:,14])
max_own = np.max(dk_lineups[:,14])
column_names = dk_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = dk_raw.Player.values.tolist()
elif site_var1 == 'Fanduel':
raw_baselines = fd_raw
ROO_slice = roo_raw[roo_raw['site'] == 'Fanduel']
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID))
min_own = np.min(fd_lineups[:,15])
max_own = np.max(fd_lineups[:,15])
column_names = fd_columns
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1')
if player_var1 == 'Specific Players':
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique())
elif player_var1 == 'Full Slate':
player_var2 = fd_raw.Player.values.tolist()
with col5:
if st.button("Prepare data export", key='data_export'):
data_export = st.session_state.working_seed.copy()
if site_var1 == 'Draftkings':
for col_idx in range(8):
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
elif site_var1 == 'Fanduel':
for col_idx in range(9):
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]])
st.download_button(
label="Export optimals set",
data=convert_df(data_export),
file_name='NBA_optimals_export.csv',
mime='text/csv',
)
if site_var1 == 'Draftkings':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = dk_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = dk_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif site_var1 == 'Fanduel':
if 'working_seed' in st.session_state:
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
elif 'working_seed' not in st.session_state:
st.session_state.working_seed = fd_lineups.copy()
st.session_state.working_seed = st.session_state.working_seed
if player_var1 == 'Specific Players':
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)]
elif player_var1 == 'Full Slate':
st.session_state.working_seed = fd_lineups.copy()
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names)
export_file = st.session_state.data_export_display.copy()
if site_var1 == 'Draftkings':
for col_idx in range(8):
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
elif site_var1 == 'Fanduel':
for col_idx in range(9):
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict)
with st.container():
if st.button("Reset Optimals", key='reset3'):
for key in st.session_state.keys():
del st.session_state[key]
if site_var1 == 'Draftkings':
st.session_state.working_seed = dk_lineups.copy()
elif site_var1 == 'Fanduel':
st.session_state.working_seed = fd_lineups.copy()
if 'data_export_display' in st.session_state:
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True)
st.download_button(
label="Export display optimals",
data=convert_df(export_file),
file_name='NBA_display_optimals.csv',
mime='text/csv',
)
with st.container():
if 'working_seed' in st.session_state:
# Create a new dataframe with summary statistics
if site_var1 == 'Draftkings':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,8]),
np.mean(st.session_state.working_seed[:,8]),
np.max(st.session_state.working_seed[:,8]),
np.std(st.session_state.working_seed[:,8])
],
'Proj': [
np.min(st.session_state.working_seed[:,9]),
np.mean(st.session_state.working_seed[:,9]),
np.max(st.session_state.working_seed[:,9]),
np.std(st.session_state.working_seed[:,9])
],
'Own': [
np.min(st.session_state.working_seed[:,14]),
np.mean(st.session_state.working_seed[:,14]),
np.max(st.session_state.working_seed[:,14]),
np.std(st.session_state.working_seed[:,14])
]
})
elif site_var1 == 'Fanduel':
summary_df = pd.DataFrame({
'Metric': ['Min', 'Average', 'Max', 'STDdev'],
'Salary': [
np.min(st.session_state.working_seed[:,9]),
np.mean(st.session_state.working_seed[:,9]),
np.max(st.session_state.working_seed[:,9]),
np.std(st.session_state.working_seed[:,9])
],
'Proj': [
np.min(st.session_state.working_seed[:,10]),
np.mean(st.session_state.working_seed[:,10]),
np.max(st.session_state.working_seed[:,10]),
np.std(st.session_state.working_seed[:,10])
],
'Own': [
np.min(st.session_state.working_seed[:,15]),
np.mean(st.session_state.working_seed[:,15]),
np.max(st.session_state.working_seed[:,15]),
np.std(st.session_state.working_seed[:,15])
]
})
# Set the index of the summary dataframe as the "Metric" column
summary_df = summary_df.set_index('Metric')
# Display the summary dataframe
st.subheader("Optimal Statistics")
st.dataframe(summary_df.style.format({
'Salary': '{:.2f}',
'Proj': '{:.2f}',
'Own': '{:.2f}'
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True)
with st.container():
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"])
with tab1:
if 'data_export_display' in st.session_state:
if site_var1 == 'Draftkings':
player_columns = st.session_state.data_export_display.iloc[:, :8]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.data_export_display.iloc[:, :9]
# Flatten the DataFrame and count unique values
value_counts = player_columns.values.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / lineup_num_var * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df = summary_df.sort_values('Frequency', ascending=False)
# Display the table
st.write("Player Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
st.download_button(
label="Export player frequency",
data=convert_df_to_csv(summary_df),
file_name='NBA_player_frequency.csv',
mime='text/csv',
)
with tab2:
if 'working_seed' in st.session_state:
if site_var1 == 'Draftkings':
player_columns = st.session_state.working_seed[:, :8]
elif site_var1 == 'Fanduel':
player_columns = st.session_state.working_seed[:, :9]
# Flatten the DataFrame and count unique values
value_counts = player_columns.flatten().tolist()
value_counts = pd.Series(value_counts).value_counts()
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2)
# Create a DataFrame with the results
summary_df = pd.DataFrame({
'Player': value_counts.index,
'Salary': [salary_dict.get(player, player) for player in value_counts.index],
'Frequency': value_counts.values,
'Percentage': percentages.values
})
# Sort by frequency in descending order
summary_df = summary_df.sort_values('Frequency', ascending=False)
# Display the table
st.write("Seed Frame Frequency Table:")
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True)
st.download_button(
label="Export seed frame frequency",
data=convert_df_to_csv(summary_df),
file_name='NBA_seed_frame_frequency.csv',
mime='text/csv',
)