Spaces:
Running
Running
James McCool
Update tab styling: change background colors for active and hover states to enhance UI consistency
3dbcf03
import streamlit as st | |
import numpy as np | |
import pandas as pd | |
import streamlit as st | |
import gspread | |
import pymongo | |
st.set_page_config(layout="wide") | |
def init_conn(): | |
scope = ['https://spreadsheets.google.com/feeds', 'https://www.googleapis.com/auth/drive'] | |
credentials = { | |
"type": "service_account", | |
"project_id": "model-sheets-connect", | |
"private_key_id": st.secrets['model_sheets_connect_pk'], | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvgIBADANBgkqhkiG9w0BAQEFAASCBKgwggSkAgEAAoIBAQDiu1v/e6KBKOcK\ncx0KQ23nZK3ZVvADYy8u/RUn/EDI82QKxTd/DizRLIV81JiNQxDJXSzgkbwKYEDm\n48E8zGvupU8+Nk76xNPakrQKy2Y8+VJlq5psBtGchJTuUSHcXU5Mg2JhQsB376PJ\nsCw552K6Pw8fpeMDJDZuxpKSkaJR6k9G5Dhf5q8HDXnC5Rh/PRFuKJ2GGRpX7n+2\nhT/sCax0J8jfdTy/MDGiDfJqfQrOPrMKELtsGHR9Iv6F4vKiDqXpKfqH+02E9ptz\nBk+MNcbZ3m90M8ShfRu28ebebsASfarNMzc3dk7tb3utHOGXKCf4tF8yYKo7x8BZ\noO9X4gSfAgMBAAECggEAU8ByyMpSKlTCF32TJhXnVJi/kS+IhC/Qn5JUDMuk4LXr\naAEWsWO6kV/ZRVXArjmuSzuUVrXumISapM9Ps5Ytbl95CJmGDiLDwRL815nvv6k3\nUyAS8EGKjz74RpoIoH6E7EWCAzxlnUgTn+5oP9Flije97epYk3H+e2f1f5e1Nn1d\nYNe8U+1HqJgILcxA1TAUsARBfoD7+K3z/8DVPHI8IpzAh6kTHqhqC23Rram4XoQ6\nzj/ZdVBjvnKuazETfsD+Vl3jGLQA8cKQVV70xdz3xwLcNeHsbPbpGBpZUoF73c65\nkAXOrjYl0JD5yAk+hmYhXr6H9c6z5AieuZGDrhmlFQKBgQDzV6LRXmjn4854DP/J\nI82oX2GcI4eioDZPRukhiQLzYerMQBmyqZIRC+/LTCAhYQSjNgMa+ZKyvLqv48M0\n/x398op/+n3xTs+8L49SPI48/iV+mnH7k0WI/ycd4OOKh8rrmhl/0EWb9iitwJYe\nMjTV/QxNEpPBEXfR1/mvrN/lVQKBgQDuhomOxUhWVRVH6x03slmyRBn0Oiw4MW+r\nrt1hlNgtVmTc5Mu+4G0USMZwYuOB7F8xG4Foc7rIlwS7Ic83jMJxemtqAelwOLdV\nXRLrLWJfX8+O1z/UE15l2q3SUEnQ4esPHbQnZowHLm0mdL14qSVMl1mu1XfsoZ3z\nJZTQb48CIwKBgEWbzQRtKD8lKDupJEYqSrseRbK/ax43DDITS77/DWwHl33D3FYC\nMblUm8ygwxQpR4VUfwDpYXBlklWcJovzamXpSnsfcYVkkQH47NuOXPXPkXQsw+w+\nDYcJzeu7F/vZqk9I7oBkWHUrrik9zPNoUzrfPvSRGtkAoTDSwibhoc5dAoGBAMHE\nK0T/ANeZQLNuzQps6S7G4eqjwz5W8qeeYxsdZkvWThOgDd/ewt3ijMnJm5X05hOn\ni4XF1euTuvUl7wbqYx76Wv3/1ZojiNNgy7ie4rYlyB/6vlBS97F4ZxJdxMlabbCW\n6b3EMWa4EVVXKoA1sCY7IVDE+yoQ1JYsZmq45YzPAoGBANWWHuVueFGZRDZlkNlK\nh5OmySmA0NdNug3G1upaTthyaTZ+CxGliwBqMHAwpkIRPwxUJpUwBTSEGztGTAxs\nWsUOVWlD2/1JaKSmHE8JbNg6sxLilcG6WEDzxjC5dLL1OrGOXj9WhC9KX3sq6qb6\nF/j9eUXfXjAlb042MphoF3ZC\n-----END PRIVATE KEY-----\n", | |
"client_email": "[email protected]", | |
"client_id": "100369174533302798535", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40model-sheets-connect.iam.gserviceaccount.com" | |
} | |
credentials2 = { | |
"type": "service_account", | |
"project_id": "sheets-api-connect-378620", | |
"private_key_id": st.secrets['sheets_api_connect_pk'], | |
"private_key": "-----BEGIN PRIVATE KEY-----\nMIIEvQIBADANBgkqhkiG9w0BAQEFAASCBKcwggSjAgEAAoIBAQCtKa01beXwc88R\nnPZVQTNPVQuBnbwoOfc66gW3547ja/UEyIGAF112dt/VqHprRafkKGmlg55jqJNt\na4zceLKV+wTm7vBu7lDISTJfGzCf2TrxQYNqwMKE2LOjI69dBM8u4Dcb4k0wcp9v\ntW1ZzLVVuwTvmrg7JBHjiSaB+x5wxm/r3FOiJDXdlAgFlytzqgcyeZMJVKKBQHyJ\njEGg/1720A0numuOCt71w/2G0bDmijuj1e6tH32MwRWcvRNZ19K9ssyDz2S9p68s\nYDhIxX69OWxwScTIHLY6J2t8txf/XMivL/636fPlDADvBEVTdlT606n8CcKUVQeq\npUVdG+lfAgMBAAECggEAP38SUA7B69eTfRpo658ycOs3Amr0JW4H/bb1rNeAul0K\nZhwd/HnU4E07y81xQmey5kN5ZeNrD5EvqkZvSyMJHV0EEahZStwhjCfnDB/cxyix\nZ+kFhv4y9eK+kFpUAhBy5nX6T0O+2T6WvzAwbmbVsZ+X8kJyPuF9m8ldcPlD0sce\ntj8NwVq1ys52eosqs7zi2vjt+eMcaY393l4ls+vNq8Yf27cfyFw45W45CH/97/Nu\n5AmuzlCOAfFF+z4OC5g4rei4E/Qgpxa7/uom+BVfv9G0DIGW/tU6Sne0+37uoGKt\nW6DzhgtebUtoYkG7ZJ05BTXGp2lwgVcNRoPwnKJDxQKBgQDT5wYPUBDW+FHbvZSp\nd1m1UQuXyerqOTA9smFaM8sr/UraeH85DJPEIEk8qsntMBVMhvD3Pw8uIUeFNMYj\naLmZFObsL+WctepXrVo5NB6RtLB/jZYxiKMatMLUJIYtcKIp+2z/YtKiWcLnwotB\nWdCjVnPTxpkurmF2fWP/eewZ+wKBgQDRMtJg7etjvKyjYNQ5fARnCc+XsI3gkBe1\nX9oeXfhyfZFeBXWnZzN1ITgFHplDznmBdxAyYGiQdbbkdKQSghviUQ0igBvoDMYy\n1rWcy+a17Mj98uyNEfmb3X2cC6WpvOZaGHwg9+GY67BThwI3FqHIbyk6Ko09WlTX\nQpRQjMzU7QKBgAfi1iflu+q0LR+3a3vvFCiaToskmZiD7latd9AKk2ocsBd3Woy9\n+hXXecJHPOKV4oUJlJgvAZqe5HGBqEoTEK0wyPNLSQlO/9ypd+0fEnArwFHO7CMF\nycQprAKHJXM1eOOFFuZeQCaInqdPZy1UcV5Szla4UmUZWkk1m24blHzXAoGBAMcA\nyH4qdbxX9AYrC1dvsSRvgcnzytMvX05LU0uF6tzGtG0zVlub4ahvpEHCfNuy44UT\nxRWW/oFFaWjjyFxO5sWggpUqNuHEnRopg3QXx22SRRTGbN45li/+QAocTkgsiRh1\nqEcYZsO4mPCsQqAy6E2p6RcK+Xa+omxvSnVhq0x1AoGAKr8GdkCl4CF6rieLMAQ7\nLNBuuoYGaHoh8l5E2uOQpzwxVy/nMBcAv+2+KqHEzHryUv1owOi6pMLv7A9mTFoS\n18B0QRLuz5fSOsVnmldfC9fpUc6H8cH1SINZpzajqQA74bPwELJjnzrCnH79TnHG\nJuElxA33rFEjbgbzdyrE768=\n-----END PRIVATE KEY-----\n", | |
"client_email": "gspread-connection@sheets-api-connect-378620.iam.gserviceaccount.com", | |
"client_id": "106625872877651920064", | |
"auth_uri": "https://accounts.google.com/o/oauth2/auth", | |
"token_uri": "https://oauth2.googleapis.com/token", | |
"auth_provider_x509_cert_url": "https://www.googleapis.com/oauth2/v1/certs", | |
"client_x509_cert_url": "https://www.googleapis.com/robot/v1/metadata/x509/gspread-connection%40sheets-api-connect-378620.iam.gserviceaccount.com" | |
} | |
uri = st.secrets['mongo_uri'] | |
client = pymongo.MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000) | |
db = client["NBA_DFS"] | |
NBA_Data = st.secrets['NBA_Data'] | |
gc = gspread.service_account_from_dict(credentials) | |
gc2 = gspread.service_account_from_dict(credentials2) | |
return gc, gc2, db, NBA_Data | |
gcservice_account, gcservice_account2, db, NBA_Data = init_conn() | |
dk_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
fd_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own'] | |
roo_format = {'Top_finish': '{:.2%}', 'Top_5_finish': '{:.2%}', 'Top_10_finish': '{:.2%}', '20+%': '{:.2%}', '4x%': '{:.2%}', '5x%': '{:.2%}', '6x%': '{:.2%}', 'GPP%': '{:.2%}'} | |
st.markdown(""" | |
<style> | |
/* Tab styling */ | |
.stTabs [data-baseweb="tab-list"] { | |
gap: 8px; | |
padding: 4px; | |
} | |
.stTabs [data-baseweb="tab"] { | |
height: 50px; | |
white-space: pre-wrap; | |
background-color: #DAA520; | |
color: white; | |
border-radius: 10px; | |
gap: 1px; | |
padding: 10px 20px; | |
font-weight: bold; | |
transition: all 0.3s ease; | |
} | |
.stTabs [aria-selected="true"] { | |
background-color: #DAA520; | |
border: 3px solid #FFD700; | |
color: white; | |
} | |
.stTabs [data-baseweb="tab"]:hover { | |
background-color: #FFD700; | |
cursor: pointer; | |
} | |
</style>""", unsafe_allow_html=True) | |
def load_overall_stats(): | |
collection = db["DK_Player_Stats"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT', | |
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']] | |
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}) | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
dk_raw = raw_display.sort_values(by='Median', ascending=False) | |
collection = db["FD_Player_Stats"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT', | |
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']] | |
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}) | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
fd_raw = raw_display.sort_values(by='Median', ascending=False) | |
collection = db["Secondary_DK_Player_Stats"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Name', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT', | |
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']] | |
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}) | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
dk_raw_sec = raw_display.sort_values(by='Median', ascending=False) | |
collection = db["Secondary_FD_Player_Stats"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Nickname', 'Salary', 'Position', 'Team', 'Opp', 'Minutes', 'FGM', 'FGA', 'FG2M', 'FG2A', 'Threes', 'FG3A', 'FTM', 'FTA', 'TRB', 'AST', 'STL', 'BLK', 'TOV', '2P', '3P', 'FT', | |
'Points', 'Rebounds', 'Assists', 'PRA', 'PR', 'PA', 'RA', 'Steals', 'Blocks', 'Turnovers', 'Fantasy', 'Raw', 'Own']] | |
raw_display = raw_display.rename(columns={"Name": "Player", "Nickname": "Player", "Fantasy": "Median"}) | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
fd_raw_sec = raw_display.sort_values(by='Median', ascending=False) | |
collection = db["Player_Range_Of_Outcomes"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', | |
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'player_ID']] | |
raw_display = raw_display.loc[raw_display['Median'] > 0] | |
raw_display = raw_display.apply(pd.to_numeric, errors='ignore') | |
roo_raw = raw_display.sort_values(by='Median', ascending=False) | |
timestamp = raw_display['timestamp'].values[0] | |
collection = db["Range_Of_Outcomes_Backlog"] | |
cursor = collection.find() | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', | |
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX', 'site', 'version', 'slate', 'timestamp', 'Date']] | |
roo_backlog = raw_display.sort_values(by='Date', ascending=False) | |
roo_backlog = roo_backlog[roo_backlog['slate'] == 'Main Slate'] | |
return dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog | |
def init_DK_lineups(): | |
collection = db['DK_NBA_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db["DK_NBA_seed_frame"] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['PG', 'SG', 'SF', 'PF', 'C', 'G', 'F', 'FLEX'] | |
for col in dict_columns: | |
raw_display[col] = raw_display[col].map(names_dict) | |
DK_seed = raw_display.to_numpy() | |
return DK_seed | |
def init_FD_lineups(): | |
collection = db['FD_NBA_name_map'] | |
cursor = collection.find() | |
raw_data = pd.DataFrame(list(cursor)) | |
names_dict = dict(zip(raw_data['key'], raw_data['value'])) | |
collection = db["FD_NBA_seed_frame"] | |
cursor = collection.find().limit(10000) | |
raw_display = pd.DataFrame(list(cursor)) | |
raw_display = raw_display[['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1', 'salary', 'proj', 'Team', 'Team_count', 'Secondary', 'Secondary_count', 'Own']] | |
dict_columns = ['PG1', 'PG2', 'SG1', 'SG2', 'SF1', 'SF2', 'PF1', 'PF2', 'C1'] | |
for col in dict_columns: | |
raw_display[col] = raw_display[col].map(names_dict) | |
FD_seed = raw_display.to_numpy() | |
return FD_seed | |
def convert_df_to_csv(df): | |
return df.to_csv().encode('utf-8') | |
def convert_df(array): | |
array = pd.DataFrame(array, columns=column_names) | |
return array.to_csv().encode('utf-8') | |
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats() | |
salary_dict = dict(zip(roo_raw.Player, roo_raw.Salary)) | |
try: | |
dk_lineups = init_DK_lineups() | |
fd_lineups = init_FD_lineups() | |
except: | |
dk_lineups = pd.DataFrame(columns=dk_columns) | |
fd_lineups = pd.DataFrame(columns=fd_columns) | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
tab1, tab2 = st.tabs(['Range of Outcomes', 'Optimals']) | |
with st.sidebar: | |
st.header("Quick Builder") | |
st.info("This is a quick hand building helper to give you some basic info about player combos and lineup feasibility") | |
sidebar_site = st.selectbox("What site are you running?", ('Draftkings', 'Fanduel'), key='sidebar_site') | |
sidebar_slate = st.selectbox("What slate are you running?", ('Main Slate', 'Secondary Slate'), key='sidebar_slate') | |
if sidebar_site == 'Draftkings': | |
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)] | |
roo_sample = roo_sample[roo_sample['site'] == 'Draftkings'] | |
roo_sample = roo_sample.sort_values(by='Own', ascending=False) | |
selected_pg = [] | |
selected_sg = [] | |
selected_sf = [] | |
selected_pf = [] | |
selected_c = [] | |
selected_g = [] | |
selected_f = [] | |
selected_flex = [] | |
elif sidebar_site == 'Fanduel': | |
roo_sample = roo_raw[roo_raw['slate'] == str(sidebar_slate)] | |
roo_sample = roo_sample[roo_sample['site'] == 'Fanduel'] | |
roo_sample = roo_sample.sort_values(by='Own', ascending=False) | |
selected_pg1 = [] | |
selected_pg2 = [] | |
selected_sg1 = [] | |
selected_sg2 = [] | |
selected_sf1 = [] | |
selected_sf2 = [] | |
selected_pf1 = [] | |
selected_pf2 = [] | |
selected_c1 = [] | |
# Get unique players by position from dk_roo_raw | |
pgs = roo_sample[roo_sample['Position'].str.contains('PG')]['Player'].unique() | |
sgs = roo_sample[roo_sample['Position'].str.contains('SG')]['Player'].unique() | |
sfs = roo_sample[roo_sample['Position'].str.contains('SF')]['Player'].unique() | |
pfs = roo_sample[roo_sample['Position'].str.contains('PF')]['Player'].unique() | |
centers = roo_sample[roo_sample['Position'].str.contains('C')]['Player'].unique() | |
guards = roo_sample[roo_sample['Position'].str.contains('G')]['Player'].unique() | |
forwards = roo_sample[roo_sample['Position'].str.contains('F')]['Player'].unique() | |
flex = roo_sample['Player'].unique() | |
if sidebar_site == 'Draftkings': | |
selected_pgs = st.multiselect('Select PG:', list(pgs), default=None, placeholder='Select PG', label_visibility='collapsed', key='pg1') | |
selected_sgs = st.multiselect('Select SG:', list(sgs), default=None, placeholder='Select SG', label_visibility='collapsed', key='sg1') | |
selected_sfs = st.multiselect('Select SF:', list(sfs), default=None, placeholder='Select SF', label_visibility='collapsed', key='sf1') | |
selected_pfs = st.multiselect('Select PF:', list(pfs), default=None, placeholder='Select PF', label_visibility='collapsed', key='pf1') | |
selected_cs = st.multiselect('Select C:', list(centers), default=None, placeholder='Select C', label_visibility='collapsed', key='c1') | |
selected_g = st.multiselect('Select G:', list(guards), default=None, placeholder='Select G', label_visibility='collapsed', key='g') | |
selected_f = st.multiselect('Select F:', list(forwards), default=None, placeholder='Select F', label_visibility='collapsed', key='f') | |
selected_flex = st.multiselect('Select Flex:', list(flex), default=None, placeholder='Select Flex', label_visibility='collapsed', key='flex') | |
# Combine all selected players | |
all_selected = selected_pgs + selected_sgs + selected_sfs + selected_pfs + selected_cs + selected_g + selected_f + selected_flex | |
elif sidebar_site == 'Fanduel': | |
selected_pg1 = st.multiselect('Select PG1:', list(pgs), default=None, placeholder='Select PG1', label_visibility='collapsed', key='pg1') | |
selected_pg2 = st.multiselect('Select PG2:', list(pgs), default=None, placeholder='Select PG2', label_visibility='collapsed', key='pg2') | |
selected_sg1 = st.multiselect('Select SG1:', list(sgs), default=None, placeholder='Select SG1', label_visibility='collapsed', key='sg1') | |
selected_sg2 = st.multiselect('Select SG2:', list(sgs), default=None, placeholder='Select SG2', label_visibility='collapsed', key='sg2') | |
selected_sf1 = st.multiselect('Select SF1:', list(sfs), default=None, placeholder='Select SF1', label_visibility='collapsed', key='sf1') | |
selected_sf2 = st.multiselect('Select SF2:', list(sfs), default=None, placeholder='Select SF2', label_visibility='collapsed', key='sf2') | |
selected_pf1 = st.multiselect('Select PF1:', list(pfs), default=None, placeholder='Select PF1', label_visibility='collapsed', key='pf1') | |
selected_pf2 = st.multiselect('Select PF2:', list(pfs), default=None, placeholder='Select PF2', label_visibility='collapsed', key='pf2') | |
selected_c1 = st.multiselect('Select C1:', list(centers), default=None, placeholder='Select C1', label_visibility='collapsed', key='c1') | |
# Combine all selected players | |
all_selected = selected_pg1 + selected_pg2 + selected_sg1 + selected_sg2 + selected_sf1 + selected_sf2 + selected_pf1 + selected_pf2 + selected_c1 | |
if all_selected: | |
# Get stats for selected players | |
selected_stats = roo_sample[roo_sample['Player'].isin(all_selected)] | |
# Calculate sums | |
salary_sum = selected_stats['Salary'].sum() | |
median_sum = selected_stats['Median'].sum() | |
own_sum = selected_stats['Own'].sum() | |
levx_sum = selected_stats['LevX'].sum() | |
# Display sums | |
st.write('---') | |
if sidebar_site == 'Draftkings': | |
if salary_sum > 50000: | |
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $50,000') | |
else: | |
st.write(f'Total Salary: ${salary_sum:.2f}') | |
elif sidebar_site == 'Fanduel': | |
if salary_sum > 60000: | |
st.warning(f'Total Salary: ${salary_sum:.2f} exceeds limit of $60,000') | |
else: | |
st.write(f'Total Salary: ${salary_sum:.2f}') | |
st.write(f'Total Median: {median_sum:.2f}') | |
st.write(f'Total Ownership: {own_sum:.2f}%') | |
st.write(f'Total LevX: {levx_sum:.2f}') | |
with tab1: | |
with st.expander("Info and Filters"): | |
with st.container(): | |
st.info("Advanced view includes all stats and thresholds, simple includes just basic columns for ease of use on mobile") | |
with st.container(): | |
# First row - timestamp and reset button | |
col1, col2 = st.columns([3, 1]) | |
with col1: | |
st.info(t_stamp) | |
with col2: | |
if st.button("Load/Reset Data", key='reset1'): | |
st.cache_data.clear() | |
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats() | |
id_dict = dict(zip(roo_raw.Player, roo_raw.player_ID)) | |
dk_lineups = init_DK_lineups() | |
fd_lineups = init_FD_lineups() | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
col1, col2, col3, col4 = st.columns(4) | |
with col1: | |
view_var2 = st.radio("View Type", ('Simple', 'Advanced'), key='view_var2') | |
with col2: | |
site_var2 = st.radio("Site", ('Draftkings', 'Fanduel'), key='site_var2') | |
# Process site selection | |
if site_var2 == 'Draftkings': | |
site_baselines = roo_raw[roo_raw['site'] == 'Draftkings'] | |
site_backlog = roo_backlog[roo_backlog['site'] == 'Draftkings'] | |
elif site_var2 == 'Fanduel': | |
site_baselines = roo_raw[roo_raw['site'] == 'Fanduel'] | |
site_backlog = roo_backlog[roo_backlog['site'] == 'Fanduel'] | |
with col3: | |
slate_split = st.radio("Slate Type", ('Main Slate', 'Secondary', 'Backlog'), key='slate_split') | |
if slate_split == 'Main Slate': | |
raw_baselines = site_baselines[site_baselines['slate'] == 'Main Slate'] | |
elif slate_split == 'Secondary': | |
raw_baselines = site_baselines[site_baselines['slate'] == 'Secondary Slate'] | |
elif slate_split == 'Backlog': | |
raw_baselines = site_backlog | |
# Third row - backlog options | |
col1, col2 = st.columns(2) | |
with col1: | |
view_all = st.checkbox("View all dates?", key='view_all') | |
with col2: | |
if not view_all: | |
date_var2 = st.date_input("Select date", key='date_var2') | |
if view_all: | |
raw_baselines = raw_baselines.sort_values(by=['Median', 'Date'], ascending=[False, False]) | |
else: | |
raw_baselines = raw_baselines[raw_baselines['Date'] == date_var2.strftime('%m-%d-%Y')] | |
raw_baselines = raw_baselines.sort_values(by='Median', ascending=False) | |
with col4: | |
split_var2 = st.radio("Slate Range", ('Full Slate Run', 'Specific Games'), key='split_var2') | |
if split_var2 == 'Specific Games': | |
team_var2 = st.multiselect('Select teams for ROO', options=raw_baselines['Team'].unique(), key='team_var2') | |
else: | |
team_var2 = raw_baselines.Team.values.tolist() | |
pos_var2 = st.selectbox('Position Filter', options=['All', 'PG', 'SG', 'SF', 'PF', 'C'], key='pos_var2') | |
col1, col2 = st.columns(2) | |
with col1: | |
low_salary = st.number_input('Enter Lowest Salary', min_value=3000, max_value=15000, value=3000, step=100, key='low_salary') | |
with col2: | |
high_salary = st.number_input('Enter Highest Salary', min_value=3000, max_value=15000, value=15000, step=100, key='high_salary') | |
display_container_1 = st.empty() | |
display_dl_container_1 = st.empty() | |
display_proj = raw_baselines[raw_baselines['Team'].isin(team_var2)] | |
display_proj = display_proj[display_proj['Salary'].between(low_salary, high_salary)] | |
if view_var2 == 'Advanced': | |
display_proj = display_proj[['Player', 'Minutes Proj', 'Position', 'Team', 'Opp', 'Salary', 'Floor', 'Median', 'Ceiling', 'Top_finish', 'Top_5_finish', 'Top_10_finish', '20+%', '4x%', '5x%', '6x%', 'GPP%', | |
'Own', 'Small_Own', 'Large_Own', 'Cash_Own', 'CPT_Own', 'LevX', 'ValX']] | |
elif view_var2 == 'Simple': | |
display_proj = display_proj[['Player', 'Position', 'Salary', 'Median', 'GPP%', 'Own']] | |
export_data = display_proj.copy() | |
# display_proj = display_proj.set_index('Player') | |
st.session_state.display_proj = display_proj | |
with display_container_1: | |
display_container = st.empty() | |
if 'display_proj' in st.session_state: | |
if pos_var2 == 'All': | |
st.session_state.display_proj = st.session_state.display_proj | |
elif pos_var2 != 'All': | |
st.session_state.display_proj = st.session_state.display_proj[st.session_state.display_proj['Position'].str.contains(pos_var2)] | |
st.dataframe(st.session_state.display_proj.style.set_properties(**{'font-size': '6pt'}).background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(roo_format, precision=2), height=1000, use_container_width = True, hide_index=True) | |
with display_dl_container_1: | |
display_dl_container = st.empty() | |
if 'display_proj' in st.session_state: | |
st.download_button( | |
label="Export Tables", | |
data=convert_df_to_csv(export_data), | |
file_name='NBA_ROO_export.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
with st.expander("Info and Filters"): | |
if st.button("Load/Reset Data", key='reset2'): | |
st.cache_data.clear() | |
dk_raw, fd_raw, dk_raw_sec, fd_raw_sec, roo_raw, timestamp, roo_backlog = load_overall_stats() | |
dk_lineups = init_DK_lineups() | |
fd_lineups = init_FD_lineups() | |
t_stamp = f"Last Update: " + str(timestamp) + f" CST" | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
col1, col2, col3, col4, col5 = st.columns(5) | |
with col1: | |
slate_var1 = st.radio("Which data are you loading?", ('Main Slate', 'Just the Main Slate')) | |
with col2: | |
site_var1 = st.radio("What site are you working with?", ('Draftkings', 'Fanduel')) | |
with col3: | |
lineup_num_var = st.number_input("How many lineups do you want to display?", min_value=1, max_value=1000, value=150, step=1) | |
with col4: | |
if site_var1 == 'Draftkings': | |
raw_baselines = dk_raw | |
ROO_slice = roo_raw[roo_raw['site'] == 'Draftkings'] | |
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID)) | |
# Get the minimum and maximum ownership values from dk_lineups | |
min_own = np.min(dk_lineups[:,14]) | |
max_own = np.max(dk_lineups[:,14]) | |
column_names = dk_columns | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = dk_raw['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = dk_raw.Player.values.tolist() | |
elif site_var1 == 'Fanduel': | |
raw_baselines = fd_raw | |
ROO_slice = roo_raw[roo_raw['site'] == 'Fanduel'] | |
id_dict = dict(zip(ROO_slice.Player, ROO_slice.player_ID)) | |
min_own = np.min(fd_lineups[:,15]) | |
max_own = np.max(fd_lineups[:,15]) | |
column_names = fd_columns | |
player_var1 = st.radio("Do you want a frame with specific Players?", ('Full Slate', 'Specific Players'), key='player_var1') | |
if player_var1 == 'Specific Players': | |
player_var2 = st.multiselect('Which players do you want?', options = fd_raw['Player'].unique()) | |
elif player_var1 == 'Full Slate': | |
player_var2 = fd_raw.Player.values.tolist() | |
with col5: | |
if st.button("Prepare data export", key='data_export'): | |
data_export = st.session_state.working_seed.copy() | |
if site_var1 == 'Draftkings': | |
for col_idx in range(8): | |
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) | |
elif site_var1 == 'Fanduel': | |
for col_idx in range(9): | |
data_export[:, col_idx] = np.array([id_dict.get(player, player) for player in data_export[:, col_idx]]) | |
st.download_button( | |
label="Export optimals set", | |
data=convert_df(data_export), | |
file_name='NBA_optimals_export.csv', | |
mime='text/csv', | |
) | |
if site_var1 == 'Draftkings': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = dk_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif site_var1 == 'Fanduel': | |
if 'working_seed' in st.session_state: | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
elif 'working_seed' not in st.session_state: | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.working_seed = st.session_state.working_seed | |
if player_var1 == 'Specific Players': | |
st.session_state.working_seed = st.session_state.working_seed[np.equal.outer(st.session_state.working_seed, player_var2).any(axis=1).all(axis=1)] | |
elif player_var1 == 'Full Slate': | |
st.session_state.working_seed = fd_lineups.copy() | |
st.session_state.data_export_display = pd.DataFrame(st.session_state.working_seed[0:lineup_num_var], columns=column_names) | |
export_file = st.session_state.data_export_display.copy() | |
if site_var1 == 'Draftkings': | |
for col_idx in range(8): | |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) | |
elif site_var1 == 'Fanduel': | |
for col_idx in range(9): | |
export_file.iloc[:, col_idx] = export_file.iloc[:, col_idx].map(id_dict) | |
with st.container(): | |
if st.button("Reset Optimals", key='reset3'): | |
for key in st.session_state.keys(): | |
del st.session_state[key] | |
if site_var1 == 'Draftkings': | |
st.session_state.working_seed = dk_lineups.copy() | |
elif site_var1 == 'Fanduel': | |
st.session_state.working_seed = fd_lineups.copy() | |
if 'data_export_display' in st.session_state: | |
st.dataframe(st.session_state.data_export_display.style.background_gradient(axis=0).background_gradient(cmap='RdYlGn').format(precision=2), height=500, use_container_width = True) | |
st.download_button( | |
label="Export display optimals", | |
data=convert_df(export_file), | |
file_name='NBA_display_optimals.csv', | |
mime='text/csv', | |
) | |
with st.container(): | |
if 'working_seed' in st.session_state: | |
# Create a new dataframe with summary statistics | |
if site_var1 == 'Draftkings': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,8]), | |
np.mean(st.session_state.working_seed[:,8]), | |
np.max(st.session_state.working_seed[:,8]), | |
np.std(st.session_state.working_seed[:,8]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,9]), | |
np.mean(st.session_state.working_seed[:,9]), | |
np.max(st.session_state.working_seed[:,9]), | |
np.std(st.session_state.working_seed[:,9]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,14]), | |
np.mean(st.session_state.working_seed[:,14]), | |
np.max(st.session_state.working_seed[:,14]), | |
np.std(st.session_state.working_seed[:,14]) | |
] | |
}) | |
elif site_var1 == 'Fanduel': | |
summary_df = pd.DataFrame({ | |
'Metric': ['Min', 'Average', 'Max', 'STDdev'], | |
'Salary': [ | |
np.min(st.session_state.working_seed[:,9]), | |
np.mean(st.session_state.working_seed[:,9]), | |
np.max(st.session_state.working_seed[:,9]), | |
np.std(st.session_state.working_seed[:,9]) | |
], | |
'Proj': [ | |
np.min(st.session_state.working_seed[:,10]), | |
np.mean(st.session_state.working_seed[:,10]), | |
np.max(st.session_state.working_seed[:,10]), | |
np.std(st.session_state.working_seed[:,10]) | |
], | |
'Own': [ | |
np.min(st.session_state.working_seed[:,15]), | |
np.mean(st.session_state.working_seed[:,15]), | |
np.max(st.session_state.working_seed[:,15]), | |
np.std(st.session_state.working_seed[:,15]) | |
] | |
}) | |
# Set the index of the summary dataframe as the "Metric" column | |
summary_df = summary_df.set_index('Metric') | |
# Display the summary dataframe | |
st.subheader("Optimal Statistics") | |
st.dataframe(summary_df.style.format({ | |
'Salary': '{:.2f}', | |
'Proj': '{:.2f}', | |
'Own': '{:.2f}' | |
}).background_gradient(cmap='RdYlGn', axis=0, subset=['Salary', 'Proj', 'Own']), use_container_width=True) | |
with st.container(): | |
tab1, tab2 = st.tabs(["Display Frequency", "Seed Frame Frequency"]) | |
with tab1: | |
if 'data_export_display' in st.session_state: | |
if site_var1 == 'Draftkings': | |
player_columns = st.session_state.data_export_display.iloc[:, :8] | |
elif site_var1 == 'Fanduel': | |
player_columns = st.session_state.data_export_display.iloc[:, :9] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.values.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / lineup_num_var * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Salary': [salary_dict.get(player, player) for player in value_counts.index], | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
# Display the table | |
st.write("Player Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True) | |
st.download_button( | |
label="Export player frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='NBA_player_frequency.csv', | |
mime='text/csv', | |
) | |
with tab2: | |
if 'working_seed' in st.session_state: | |
if site_var1 == 'Draftkings': | |
player_columns = st.session_state.working_seed[:, :8] | |
elif site_var1 == 'Fanduel': | |
player_columns = st.session_state.working_seed[:, :9] | |
# Flatten the DataFrame and count unique values | |
value_counts = player_columns.flatten().tolist() | |
value_counts = pd.Series(value_counts).value_counts() | |
percentages = (value_counts / len(st.session_state.working_seed) * 100).round(2) | |
# Create a DataFrame with the results | |
summary_df = pd.DataFrame({ | |
'Player': value_counts.index, | |
'Salary': [salary_dict.get(player, player) for player in value_counts.index], | |
'Frequency': value_counts.values, | |
'Percentage': percentages.values | |
}) | |
# Sort by frequency in descending order | |
summary_df = summary_df.sort_values('Frequency', ascending=False) | |
# Display the table | |
st.write("Seed Frame Frequency Table:") | |
st.dataframe(summary_df.style.format({'Percentage': '{:.2f}%'}, precision=2), height=500, use_container_width=True) | |
st.download_button( | |
label="Export seed frame frequency", | |
data=convert_df_to_csv(summary_df), | |
file_name='NBA_seed_frame_frequency.csv', | |
mime='text/csv', | |
) | |