Spaces:
Running
Running
James McCool
commited on
Commit
·
f135d43
1
Parent(s):
7474807
Enhance player prop analysis by introducing 'over_adj' and 'under_adj' adjustments in Bet_check calculations. This update improves the accuracy of betting suggestions by factoring in adjusted outcomes based on player performance metrics. Refined DataFrame calculations ensure better decision-making in simulations.
Browse files
app.py
CHANGED
@@ -594,6 +594,8 @@ with tab6:
|
|
594 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
595 |
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
596 |
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
|
|
|
|
597 |
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
598 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
599 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
@@ -608,7 +610,7 @@ with tab6:
|
|
608 |
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
609 |
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
610 |
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
611 |
-
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
612 |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
613 |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
614 |
players_only['Edge'] = players_only['Bet_check']
|
@@ -746,6 +748,8 @@ with tab6:
|
|
746 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
747 |
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
748 |
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
|
|
|
|
749 |
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
750 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
751 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
@@ -760,7 +764,7 @@ with tab6:
|
|
760 |
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
761 |
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
762 |
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
763 |
-
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] , players_only['Under_diff'])
|
764 |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
765 |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
766 |
players_only['Edge'] = players_only['Bet_check']
|
|
|
594 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
595 |
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
596 |
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
597 |
+
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
|
598 |
+
players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
|
599 |
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
600 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
601 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
|
|
610 |
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
611 |
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
612 |
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
613 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
|
614 |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
615 |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
616 |
players_only['Edge'] = players_only['Bet_check']
|
|
|
748 |
players_only['Prop'] = players_only['Player'].map(prop_dict)
|
749 |
players_only['Trending Over'] = players_only['Player'].map(trending_over_dict)
|
750 |
players_only['Trending Under'] = players_only['Player'].map(trending_under_dict)
|
751 |
+
players_only['over_adj'] = np_where((players_only['Mean_Outcome'] - players_only['Prop']) > 0, 1, (players_only['Mean_Outcome'] / players_only['Prop']))
|
752 |
+
players_only['under_adj'] = np_where((players_only['Prop'] - players_only['Mean_Outcome']) > 0, 1, (players_only['Prop'] / players_only['Mean_Outcome']))
|
753 |
players_only['poisson_var'] = players_only.apply(calculate_poisson, axis=1)
|
754 |
players_only['10%'] = overall_file.quantile(0.1, axis=1)
|
755 |
players_only['90%'] = overall_file.quantile(0.9, axis=1)
|
|
|
764 |
players_only = players_only[players_only['Mean_Outcome'] > 0]
|
765 |
players_only['Over_diff'] = players_only['Over%'] - players_only['Imp Over']
|
766 |
players_only['Under_diff'] = players_only['Under%'] - players_only['Imp Under']
|
767 |
+
players_only['Bet_check'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], players_only['Over_diff'] * players_only['over_adj'], players_only['Under_diff'] * players_only['under_adj'])
|
768 |
players_only['Bet_suggest'] = np.where(players_only['Over_diff'] > players_only['Under_diff'], "Over" , "Under")
|
769 |
players_only['Bet?'] = np.where(players_only['Bet_check'] >= players_only['prop_threshold'], players_only['Bet_suggest'], "No Bet")
|
770 |
players_only['Edge'] = players_only['Bet_check']
|