File size: 37,631 Bytes
58cea02 91e473e d765ee8 0841c51 38d3f0b 0841c51 910ce9f 0841c51 910ce9f 69590e2 e04a121 38d3f0b e04a121 0841c51 dc9501e 869c271 48da594 869c271 7365d98 629cb6e ceb4948 869c271 629cb6e 869c271 0841c51 58cea02 9c7e08b 45a70a9 1748ccd d18e5a9 8f424e5 0841c51 45351e3 58cea02 4ad4038 8e43993 99e552f 8e43993 d04558f 58cea02 1666aa7 7de18e9 1689df1 7829724 4127d38 d69a1b2 55a9933 f543677 7f07fe7 c4642dd 7f07fe7 7829724 d69a1b2 7829724 237985f 7829724 c1c18f8 7829724 e04a121 7829724 8b08b1a a692d2e 1666aa7 0841c51 41768e4 a34bb65 6e5cc93 996f8cb a34bb65 a692d2e 6a6220a a692d2e 41768e4 b5afac7 6a6220a b5afac7 928ec6e a692d2e 440bba8 a692d2e 68d3916 e7e2a49 5b9c82c 3d4e38c 68d3916 1854e4d 3e52c68 a4e3e2e 3597da4 a4e3e2e e084aa6 1854e4d 28939d0 a4e3e2e 9f87d22 28939d0 5d76637 59dc088 d765ee8 d91cbaa a4e3e2e d91cbaa d765ee8 59dc088 d765ee8 d91cbaa a4e3e2e d91cbaa d765ee8 0b97fc2 d91cbaa 0295f53 a4e3e2e 76d511e 59dc088 99e552f 62a6685 16fbcab 6db62f0 f49d54b f56fa41 a4e3e2e f56fa41 a4e3e2e f56fa41 5370c50 0b97fc2 5370c50 f56fa41 a4e3e2e f56fa41 b36408f 55a782f b36408f f56fa41 16fbcab 96d409b a4e3e2e 1817a5f a4e3e2e 1cbe27c 1599cba 0d01fa6 f344ebf 6e8cffc 886a898 e025a7c b27b8d0 c7440a1 1cbe27c c7440a1 886a898 6e8cffc 1599cba 4ac617e b9319bd 4ac617e b9319bd 4ac617e b9319bd 4ac617e b9319bd 4ac617e b9319bd 544cf42 1599cba 544cf42 16aefb8 6e8cffc 8aaea01 a4e3e2e 1599cba 3eb2035 a4e3e2e f344ebf 3e52c68 6e8cffc a4e3e2e 6e8cffc a19edd8 6e8cffc a19edd8 6e8cffc a19edd8 9da8f46 a19edd8 857c2eb 6e8cffc a4e3e2e 6e8cffc 3e52c68 e8a3351 6e8cffc b36408f 6e8cffc 6594d81 45351e3 6594d81 45351e3 00f9a6c 6e8cffc 45351e3 df8ffd8 45351e3 8e622a8 45351e3 6e8cffc 1748ccd a4e3e2e 6e8cffc a4e3e2e 6e8cffc a4e3e2e 6e8cffc a4e3e2e 6e8cffc 8f424e5 a4e3e2e fa28f02 8f424e5 a4e3e2e fa28f02 8f424e5 b36408f d415f18 a4e3e2e d415f18 fd1c071 d415f18 eabaa7d d415f18 eabaa7d d415f18 2ceda65 d415f18 e8a3351 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 |
import streamlit as st
st.set_page_config(layout="wide")
import numpy as np
import pandas as pd
from rapidfuzz import process, fuzz
from collections import Counter
from pymongo.mongo_client import MongoClient
from pymongo.server_api import ServerApi
from datetime import datetime
def init_conn():
uri = st.secrets['mongo_uri']
client = MongoClient(uri, retryWrites=True, serverSelectionTimeoutMS=500000)
db = client['Contest_Information']
return db
def grab_contest_names(db, sport, type):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'sd'
collection = db[f'{sport}_{db_type}_contest_info']
cursor = collection.find()
curr_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
curr_info['Date'] = pd.to_datetime(curr_info['Contest Date'].sort_values(ascending = False))
curr_info['Date'] = curr_info['Date'].dt.strftime('%Y-%m-%d')
contest_names = curr_info['Contest Name'] + ' - ' + curr_info['Date']
return contest_names, curr_info
def grab_contest_player_info(db, sport, type, contest_date, contest_name, contest_id_map):
if type == 'Classic':
db_type = 'reg'
elif type == 'Showdown':
db_type = 'showdown'
collection = db[f'{sport}_{db_type}_player_info']
cursor = collection.find()
player_info = pd.DataFrame(list(cursor)).drop('_id', axis=1)
player_info = player_info[player_info['Contest Date'] == contest_date]
player_info = player_info.rename(columns={'Display Name': 'Player'})
player_info = player_info.sort_values(by='Salary', ascending=True).drop_duplicates(subset='Player', keep='first')
info_maps = {
'position_dict': dict(zip(player_info['Player'], player_info['Position'])),
'salary_dict': dict(zip(player_info['Player'], player_info['Salary'])),
'team_dict': dict(zip(player_info['Player'], player_info['Team'])),
'opp_dict': dict(zip(player_info['Player'], player_info['Opp'])),
'fpts_avg_dict': dict(zip(player_info['Player'], player_info['Avg FPTS']))
}
return player_info, info_maps
db = init_conn()
## import global functions
from global_func.load_contest_file import load_contest_file
from global_func.create_player_exposures import create_player_exposures
from global_func.create_stack_exposures import create_stack_exposures
from global_func.create_stack_size_exposures import create_stack_size_exposures
from global_func.create_general_exposures import create_general_exposures
from global_func.grab_contest_data import grab_contest_data
from global_func.create_player_comparison import create_player_comparison
def is_valid_input(file):
if isinstance(file, pd.DataFrame):
return not file.empty
else:
return file is not None # For Streamlit uploader objects
player_exposure_format = {'Exposure Overall': '{:.2%}', 'Exposure Top 1%': '{:.2%}', 'Exposure Top 5%': '{:.2%}', 'Exposure Top 10%': '{:.2%}', 'Exposure Top 20%': '{:.2%}'}
dupe_format = {'uniques%': '{:.2%}', 'under_5%': '{:.2%}', 'under_10%': '{:.2%}'}
tab1, tab2 = st.tabs(["Data Load", "Contest Analysis"])
with tab1:
col1, col2 = st.columns(2)
with col1:
if st.button('Clear data', key='reset1'):
st.session_state.clear()
sport_options, date_options = st.columns(2)
parse_type = 'Manual'
with sport_options:
sport_select = st.selectbox("Select Sport", ['MLB', 'MMA', 'GOLF', 'NBA', 'NHL', 'WNBA'], key='sport_select')
type_var = st.selectbox("Select Game Type", ['Classic', 'Showdown'], key='type_var')
try:
contest_names, curr_info = grab_contest_names(db, sport_select, type_var)
except:
st.error("No contests found for this sport and/or game type")
st.stop()
with date_options:
date_list = curr_info['Date'].sort_values(ascending=False).unique()
# date_list = date_list[date_list != pd.Timestamp.today().strftime('%Y-%m-%d')]
date_select = st.selectbox("Select Date", date_list, key='date_select')
date_select2 = (pd.to_datetime(date_select) + pd.Timedelta(days=1)).strftime('%Y-%m-%d')
name_parse = curr_info[curr_info['Date'] == date_select]['Contest Name'].reset_index(drop=True)
contest_id_map = dict(zip(name_parse, curr_info[curr_info['Date'] == date_select]['Contest ID']))
date_select = date_select.replace('-', '')
date_select2 = date_select2.replace('-', '')
contest_name_var = st.selectbox("Select Contest to load", name_parse)
if parse_type == 'DB Search':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
if st.button('Load Contest Data', key='load_contest_data'):
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
st.session_state['Contest_file'] = grab_contest_data(sport_select, contest_name_var, contest_id_map, date_select, date_select2)
else:
pass
with col2:
st.info(f"If you are manually loading and do not have the results CSV for the contest you selected, you can find it here: https://www.draftkings.com/contest/gamecenter/{contest_id_map[contest_name_var]}#/, or you can initiate a download with this link: https://www.draftkings.com/contest/exportfullstandingscsv/{contest_id_map[contest_name_var]}")
if parse_type == 'Manual':
if 'Contest_file_helper' in st.session_state:
del st.session_state['Contest_file_helper']
if 'Contest_file' in st.session_state:
del st.session_state['Contest_file']
if 'Contest_file' not in st.session_state:
st.session_state['Contest_upload'] = st.file_uploader("Upload Contest File (CSV or Excel)", type=['csv', 'xlsx', 'xls'])
st.session_state['player_info'], st.session_state['info_maps'] = grab_contest_player_info(db, sport_select, type_var, date_select, contest_name_var, contest_id_map)
try:
st.session_state['Contest_file'] = pd.read_csv(st.session_state['Contest_upload'])
except:
st.warning('Please upload a Contest CSV')
else:
pass
if 'Contest_file' in st.session_state:
st.session_state['Contest'], st.session_state['ownership_df'], st.session_state['actual_df'], st.session_state['entry_list'], check_lineups = load_contest_file(st.session_state['Contest_file'], type_var, st.session_state['player_info'], sport_select)
st.session_state['Contest'] = st.session_state['Contest'].dropna(how='all')
st.session_state['Contest'] = st.session_state['Contest'].reset_index(drop=True)
if st.session_state['Contest'] is not None:
st.success('Contest file loaded successfully!')
st.dataframe(st.session_state['Contest'].head(100))
if 'Contest_file' in st.session_state:
st.session_state['ownership_dict'] = dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own']))
st.session_state['actual_dict'] = dict(zip(st.session_state['actual_df']['Player'], st.session_state['actual_df']['FPTS']))
st.session_state['salary_dict'] = st.session_state['info_maps']['salary_dict']
st.session_state['team_dict'] = st.session_state['info_maps']['team_dict']
st.session_state['pos_dict'] = st.session_state['info_maps']['position_dict']
st.write(st.session_state['salary_dict'])
with tab2:
excluded_cols = ['BaseName', 'EntryCount']
if 'Contest' in st.session_state and 'display_contest_info' not in st.session_state:
st.session_state['player_columns'] = [col for col in st.session_state['Contest'].columns if col not in excluded_cols]
print(st.session_state['player_columns'])
for col in st.session_state['player_columns']:
st.session_state['Contest'][col] = st.session_state['Contest'][col].astype(str).str.strip()
# Create mapping dictionaries
st.session_state['map_dict'] = {
'pos_map': st.session_state['pos_dict'],
'team_map': st.session_state['team_dict'],
'salary_map': st.session_state['salary_dict'],
'own_map': st.session_state['ownership_dict'],
'own_percent_rank': dict(zip(st.session_state['ownership_df']['Player'], st.session_state['ownership_df']['Own'].rank(pct=True)))
}
# Create a copy of the dataframe for calculations
working_df = st.session_state['Contest'].copy()
if type_var == 'Classic':
working_df['stack'] = working_df.apply(
lambda row: Counter(
st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]
if st.session_state['map_dict']['team_map'].get(player, '') != ''
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]) else '',
axis=1
)
working_df['stack_size'] = working_df.apply(
lambda row: Counter(
st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]
if st.session_state['map_dict']['team_map'].get(player, '') != ''
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[st.session_state['player_columns']]) else '',
axis=1
)
working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['salary_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row[st.session_state['player_columns']]), axis=1)
print("Sample row values:")
print(working_df.iloc[0][st.session_state['player_columns']])
print("Sample salary calculation:")
sample_row = working_df.iloc[0]
sample_salary = sum(st.session_state['salary_dict'].get(player, 0) for player in sample_row[st.session_state['player_columns']])
print(f"Sample salary: {sample_salary}")
print("Individual player salaries:")
for player in sample_row[st.session_state['player_columns']]:
salary = st.session_state['salary_dict'].get(player, 0)
print(f" {player}: {salary}")
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
lambda row: ','.join(sorted(row.values)),
axis=1
)
working_df['dupes'] = working_df.groupby('sorted').transform('size')
working_df['uniques'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] == 1).sum()
).reindex(working_df['BaseName']).values
working_df['under_5'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] <= 5).sum()
).reindex(working_df['BaseName']).values
working_df['under_10'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] <= 10).sum()
).reindex(working_df['BaseName']).values
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
elif type_var == 'Showdown':
working_df['stack'] = working_df.apply(
lambda row: Counter(
st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]
if st.session_state['map_dict']['team_map'].get(player, '') != ''
).most_common(1)[0][0] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
axis=1
)
working_df['stack_size'] = working_df.apply(
lambda row: Counter(
st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]
if st.session_state['map_dict']['team_map'].get(player, '') != ''
).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
axis=1
)
if sport_select == 'GOLF':
working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['salary_dict'].get(player, 0) for player in row), axis=1)
working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
else:
# Modified salary calculation with 1.5x multiplier for first player
working_df['salary'] = working_df.apply(
lambda row: (st.session_state['map_dict']['salary_map'].get(row[2], 0) * 1.5) +
sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row[3:]),
axis=1
)
# Modified actual_fpts calculation with 1.5x multiplier for first player
working_df['actual_fpts'] = working_df.apply(
lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) +
sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]),
axis=1
)
working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
lambda row: ','.join(sorted(row.values)),
axis=1
)
working_df['dupes'] = working_df.groupby('sorted').transform('size')
working_df['uniques'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] == 1).sum()
).reindex(working_df['BaseName']).values
working_df['under_5'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] <= 5).sum()
).reindex(working_df['BaseName']).values
working_df['under_10'] = working_df.groupby('BaseName').apply(
lambda x: (x['dupes'] <= 10).sum()
).reindex(working_df['BaseName']).values
working_df = working_df.reset_index()
working_df['percentile_finish'] = working_df['index'].rank(pct=True)
working_df['finish'] = working_df['index']
working_df = working_df.drop(['sorted', 'index'], axis=1)
# working_df['stack_size'] = working_df['stack_size'].fillna(1).astype(int)
st.session_state['field_player_frame'] = create_player_exposures(working_df, st.session_state['player_columns'])
st.session_state['field_stack_frame'] = create_stack_exposures(working_df)
st.session_state['display_contest_info'] = working_df.copy()
st.session_state['contest_info_reset'] = working_df.copy()
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan'] # Remove any NaN values
if 'display_contest_info' in st.session_state:
with st.expander("Info and filters"):
st.info("Note that any filtering here needs to be reset manually, i.e. if you parse down the specific users and want to reset the table, just backtrack your filtering by setting it back to 'All'")
clear_col, reset_col, blank_col = st.columns([1, 1, 7])
with clear_col:
if st.button('Clear data', key='reset3'):
st.session_state.clear()
with reset_col:
if st.button('Reset filters', key='reset4'):
st.session_state['entry_parse_var'] = 'All'
st.session_state['entry_names'] = []
st.session_state['low_entries_var'] = 1
st.session_state['high_entries_var'] = 150
st.session_state['stack_parse_var'] = 'All'
st.session_state['stack_names'] = []
st.session_state['stack_size_parse_var'] = 'All'
st.session_state['stack_size_names'] = []
st.session_state['player_parse_var'] = 'All'
st.session_state['player_names'] = []
st.session_state['remove_var'] = 'No'
st.session_state['remove_names'] = []
st.session_state['display_contest_info'] = st.session_state['contest_info_reset'].copy()
st.session_state['unique_players'] = pd.unique(st.session_state['display_contest_info'][st.session_state['player_columns']].values.ravel('K'))
st.session_state['unique_players'] = [p for p in st.session_state['unique_players'] if p != 'nan'] # Remove any NaN values
with st.form(key='filter_form'):
users_var, entries_var, stack_var, stack_size_var, player_var, remove_var = st.columns(6)
with users_var:
st.session_state['entry_parse_var'] = st.selectbox("Do you want to view a specific user(s)?", ['All', 'Specific'])
st.session_state['entry_names'] = st.multiselect("Select players", options=st.session_state['entry_list'], default=[])
with entries_var:
st.session_state['low_entries_var'] = st.number_input("Low end of entries range", min_value=0, max_value=150, value=1)
st.session_state['high_entries_var'] = st.number_input("High end of entries range", min_value=0, max_value=150, value=150)
with stack_var:
st.session_state['stack_parse_var'] = st.selectbox("Do you want to view lineups with specific team(s)?", ['All', 'Specific'])
st.session_state['stack_names'] = st.multiselect("Select teams", options=st.session_state['display_contest_info']['stack'].unique(), default=[])
with stack_size_var:
st.session_state['stack_size_parse_var'] = st.selectbox("Do you want to view a specific stack size(s)?", ['All', 'Specific'])
st.session_state['stack_size_names'] = st.multiselect("Select stack sizes", options=st.session_state['display_contest_info']['stack_size'].unique(), default=[])
with player_var:
st.session_state['player_parse_var'] = st.selectbox("Do you want to view lineups with specific player(s)?", ['All', 'Specific'])
st.session_state['player_names'] = st.multiselect("Select players to lock", options=st.session_state['unique_players'], default=[])
with remove_var:
st.session_state['remove_var'] = st.selectbox("Do you want to remove a specific player(s)?", ['No', 'Yes'])
st.session_state['remove_names'] = st.multiselect("Select players to remove", options=st.session_state['unique_players'], default=[])
submitted = st.form_submit_button("Submit")
if submitted:
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
if st.session_state['entry_parse_var'] == 'Specific' and st.session_state['entry_names']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['BaseName'].isin(st.session_state['entry_names'])]
if st.session_state['stack_parse_var'] == 'Specific' and st.session_state['stack_names']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack'].isin(st.session_state['stack_names'])]
if st.session_state['stack_size_parse_var'] == 'Specific' and st.session_state['stack_size_names']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['stack_size'].isin(st.session_state['stack_size_names'])]
if st.session_state['player_parse_var'] == 'Specific' and st.session_state['player_names']:
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: all(player in row.values for player in st.session_state['player_names']), axis=1)
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][mask]
if st.session_state['remove_var'] == 'Yes' and st.session_state['remove_names']:
mask = st.session_state['display_contest_info'][st.session_state['player_columns']].apply(lambda row: any(player in row.values for player in st.session_state['remove_names']), axis=1)
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][~mask]
if st.session_state['low_entries_var'] and st.session_state['high_entries_var']:
st.session_state['display_contest_info'] = st.session_state['display_contest_info'][st.session_state['display_contest_info']['EntryCount'].between(st.session_state['low_entries_var'], st.session_state['high_entries_var'])]
if 'display_contest_info' in st.session_state:
# Initialize pagination in session state if not exists
if 'current_page' not in st.session_state:
st.session_state.current_page = 1
# Calculate total pages
rows_per_page = 500
total_rows = len(st.session_state['display_contest_info'])
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Create pagination controls in a single row
pagination_cols = st.columns([4, 1, 1, 1, 4])
with pagination_cols[1]:
if st.button(f"Previous Page"):
if st.session_state['current_page'] > 1:
st.session_state.current_page -= 1
else:
st.session_state.current_page = 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
with pagination_cols[3]:
if st.button(f"Next Page"):
st.session_state.current_page += 1
if 'player_frame' in st.session_state:
del st.session_state['player_frame']
if 'stack_frame' in st.session_state:
del st.session_state['stack_frame']
# Calculate start and end indices for current page
start_idx = (st.session_state.current_page - 1) * rows_per_page
end_idx = min((st.session_state.current_page) * rows_per_page, total_rows)
st.dataframe(
st.session_state['display_contest_info'].iloc[start_idx:end_idx].style
.background_gradient(axis=0)
.background_gradient(cmap='RdYlGn')
.format(precision=2),
height=500,
use_container_width=True,
hide_index=True
)
else:
st.stop()
if 'Contest' in st.session_state:
with st.container():
tab1, tab2, tab3, tab4, tab5 = st.tabs(['Player Used Info', 'Stack Used Info', 'Stack Size Info', 'General Info', 'Duplication Info'])
with tab1:
with st.form(key='player_info_pos_form'):
col1, col2 = st.columns(2)
with col1:
pos_var = st.selectbox("Which position(s) would you like to view?", ['All', 'Specific'], key='pos_var')
with col2:
if sport_select == 'MLB':
pos_select = st.multiselect("Select your position(s)", ['P', 'C', '1B', '2B', '3B', 'SS', 'OF'], key='pos_select')
elif sport_select == 'NBA':
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF', 'C'], key='pos_select')
elif sport_select == 'WNBA':
pos_select = st.multiselect("Select your position(s)", ['PG', 'SG', 'SF', 'PF'], key='pos_select')
elif sport_select == 'NFL':
pos_select = st.multiselect("Select your position(s)", ['QB', 'RB', 'WR', 'TE', 'DST'], key='pos_select')
elif sport_select == 'NHL':
pos_select = st.multiselect("Select your position(s)", ['W', 'C', 'D', 'G'], key='pos_select')
elif sport_select == 'MMA':
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select')
elif sport_select == 'GOLF':
pos_select = st.multiselect("Select your position(s)", ['All the same position', 'So', 'Yeah', 'Idk'], key='pos_select')
submitted = st.form_submit_button("Submit")
if submitted:
if pos_var == 'Specific':
pos_select = pos_select
else:
pos_select = None
with st.form(key='player_exp_comp_form'):
col1, col2 = st.columns(2)
with col1:
comp_player_var = st.selectbox("Would you like to compare with anyone?", ['No', 'Yes'], key='comp_player_var')
with col2:
comp_player_select = st.multiselect("Select players to compare with:", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='comp_player_select')
submitted = st.form_submit_button("Submit")
if submitted:
if comp_player_var == 'No':
comp_player_select = None
else:
comp_player_select = comp_player_select
if comp_player_var == 'Yes':
player_exp_comp = create_player_comparison(st.session_state['display_contest_info'], st.session_state['player_columns'], comp_player_select)
st.dataframe(player_exp_comp.style.background_gradient(cmap='RdYlGn', axis=1).format(formatter='{:.2%}', subset=player_exp_comp.select_dtypes(include=['number']).columns), hide_index=True)
else:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns'])
hold_frame = st.session_state['player_frame'].copy()
if sport_select == 'GOLF':
hold_frame['Pos'] = 'G'
else:
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['player_frame'] = create_player_exposures(st.session_state['display_contest_info'], st.session_state['player_columns'], st.session_state['entry_names'])
hold_frame = st.session_state['player_frame'].copy()
if sport_select == 'GOLF':
hold_frame['Pos'] = 'G'
else:
hold_frame['Pos'] = hold_frame['Player'].map(st.session_state['map_dict']['pos_map'])
st.session_state['player_frame'].insert(1, 'Pos', hold_frame['Pos'])
st.session_state['player_frame'] = st.session_state['player_frame'].dropna(subset=['Pos'])
if pos_select:
position_mask = st.session_state['player_frame']['Pos'].apply(lambda x: any(pos in x for pos in pos_select))
st.session_state['player_frame'] = st.session_state['player_frame'][position_mask]
st.dataframe(st.session_state['player_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['player_frame'].iloc[:, 2:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab2:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info'])
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['stack_frame'] = create_stack_exposures(st.session_state['display_contest_info'], st.session_state['entry_names'])
st.dataframe(st.session_state['stack_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab3:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info'])
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
else:
st.session_state['stack_size_frame'] = create_stack_size_exposures(st.session_state['display_contest_info'], st.session_state['entry_names'])
st.dataframe(st.session_state['stack_size_frame'].
sort_values(by='Exposure Overall', ascending=False).
style.background_gradient(cmap='RdYlGn').
format(formatter='{:.2%}', subset=st.session_state['stack_size_frame'].iloc[:, 1:].select_dtypes(include=['number']).columns),
hide_index=True)
with tab4:
if st.session_state['entry_parse_var'] == 'All':
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info'])
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
else:
st.session_state['general_frame'] = create_general_exposures(st.session_state['display_contest_info'], st.session_state['entry_names'])
st.dataframe(st.session_state['general_frame'].style.background_gradient(cmap='RdYlGn', axis=1).format(precision=2), hide_index=True)
with tab5:
with st.form(key='dupe_form'):
col1, col2 = st.columns(2)
with col1:
user_dupe_var = st.selectbox("Which usage(s) would you like to view?", ['All', 'Specific'], key='user_dupe_var')
with col2:
user_dupe_select = st.multiselect("Select your user(s)", st.session_state['display_contest_info']['BaseName'].sort_values().unique(), key='user_dupe_select')
submitted = st.form_submit_button("Submit")
if submitted:
if user_dupe_var == 'Specific':
user_dupe_select = user_dupe_select
else:
user_dupe_select = None
if 'duplication_frame' not in st.session_state:
dupe_frame = st.session_state['display_contest_info'][['BaseName', 'EntryCount', 'dupes', 'uniques', 'under_5', 'under_10']]
dupe_frame['average_dupes'] = dupe_frame['dupes'].mean()
dupe_frame['uniques%'] = dupe_frame['uniques'] / dupe_frame['EntryCount']
dupe_frame['under_5%'] = dupe_frame['under_5'] / dupe_frame['EntryCount']
dupe_frame['under_10%'] = dupe_frame['under_10'] / dupe_frame['EntryCount']
dupe_frame = dupe_frame[['BaseName', 'EntryCount', 'average_dupes', 'uniques', 'uniques%', 'under_5', 'under_5%', 'under_10', 'under_10%']].drop_duplicates(subset='BaseName', keep='first')
st.session_state['duplication_frame'] = dupe_frame.sort_values(by='EntryCount', ascending=False)
if user_dupe_var == 'Specific':
st.session_state['duplication_frame'] = st.session_state['duplication_frame'][st.session_state['duplication_frame']['BaseName'].isin(user_dupe_select)]
# Initialize pagination in session state if not exists
if 'dupe_page' not in st.session_state:
st.session_state.dupe_page = 1
# Calculate total pages
rows_per_page = 50
total_rows = len(st.session_state['duplication_frame'])
total_pages = (total_rows + rows_per_page - 1) // rows_per_page
# Create pagination controls in a single row
pagination_cols = st.columns([4, 1, 1, 1, 4])
with pagination_cols[1]:
if st.button(f"Previous Dupes Page"):
if st.session_state['dupe_page'] > 1:
st.session_state.dupe_page -= 1
with pagination_cols[3]:
if st.button(f"Next Dupes Page"):
st.session_state.dupe_page += 1
# Calculate start and end indices for current page
start_dupe_idx = (st.session_state.dupe_page - 1) * rows_per_page
end_dupe_idx = min((st.session_state.dupe_page) * rows_per_page, total_rows)
st.dataframe(st.session_state['duplication_frame'].iloc[start_dupe_idx:end_dupe_idx].style.
background_gradient(cmap='RdYlGn', subset=['uniques%', 'under_5%', 'under_10%'], axis=0).
background_gradient(cmap='RdYlGn', subset=['uniques', 'under_5', 'under_10'], axis=0).
format(dupe_format, precision=2), hide_index=True) |