James McCool commited on
Commit
5370c50
·
1 Parent(s): 8fd8af6

Implement GOLF-specific salary and actual_fpts calculations in app.py

Browse files

- Updated salary and actual_fpts calculations to handle GOLF sport separately, summing values for all players instead of applying a multiplier for the first player.
- Retained the previous logic for other sports, ensuring consistent functionality across different sport selections.

Files changed (1) hide show
  1. app.py +16 -12
app.py CHANGED
@@ -221,18 +221,22 @@ with tab2:
221
  ).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
222
  axis=1
223
  )
224
- # Modified salary calculation with 1.5x multiplier for first player
225
- working_df['salary'] = working_df.apply(
226
- lambda row: (st.session_state['map_dict']['salary_map'].get(row[2], 0) * 1.5) +
227
- sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row[3:]),
228
- axis=1
229
- )
230
- # Modified actual_fpts calculation with 1.5x multiplier for first player
231
- working_df['actual_fpts'] = working_df.apply(
232
- lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) +
233
- sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]),
234
- axis=1
235
- )
 
 
 
 
236
  working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
237
  working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
238
  lambda row: ','.join(sorted(row.values)),
 
221
  ).most_common(1)[0][1] if any(st.session_state['map_dict']['team_map'].get(player, '') for player in row[2:]) else '',
222
  axis=1
223
  )
224
+ if sport_select == 'GOLF':
225
+ working_df['salary'] = working_df.apply(lambda row: sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row), axis=1)
226
+ working_df['actual_fpts'] = working_df.apply(lambda row: sum(st.session_state['actual_dict'].get(player, 0) for player in row), axis=1)
227
+ else:
228
+ # Modified salary calculation with 1.5x multiplier for first player
229
+ working_df['salary'] = working_df.apply(
230
+ lambda row: (st.session_state['map_dict']['salary_map'].get(row[2], 0) * 1.5) +
231
+ sum(st.session_state['map_dict']['salary_map'].get(player, 0) for player in row[3:]),
232
+ axis=1
233
+ )
234
+ # Modified actual_fpts calculation with 1.5x multiplier for first player
235
+ working_df['actual_fpts'] = working_df.apply(
236
+ lambda row: (st.session_state['actual_dict'].get(row[2], 0) * 1.5) +
237
+ sum(st.session_state['actual_dict'].get(player, 0) for player in row[3:]),
238
+ axis=1
239
+ )
240
  working_df['actual_own'] = working_df.apply(lambda row: sum(st.session_state['ownership_dict'].get(player, 0) for player in row), axis=1)
241
  working_df['sorted'] = working_df[st.session_state['player_columns']].apply(
242
  lambda row: ','.join(sorted(row.values)),