Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,57 +1,57 @@
|
|
1 |
-
import gradio as gr
|
2 |
-
import torch
|
3 |
-
from torch import nn
|
4 |
-
from transformers import SiglipImageProcessor,SiglipModel
|
5 |
-
import dbimutils as utils
|
6 |
-
|
7 |
-
class ScoreClassifier(nn.Module):
|
8 |
-
def __init__(self):
|
9 |
-
super(ScoreClassifier, self).__init__()
|
10 |
-
|
11 |
-
self.classifier = nn.Sequential(
|
12 |
-
nn.Linear(256, 1),
|
13 |
-
nn.Sigmoid()
|
14 |
-
)
|
15 |
-
|
16 |
-
self.extractor = nn.Sequential(
|
17 |
-
nn.Linear(768, 512),
|
18 |
-
nn.BatchNorm1d(512),
|
19 |
-
nn.ReLU(),
|
20 |
-
nn.Linear(512, 256),
|
21 |
-
nn.BatchNorm1d(256),
|
22 |
-
nn.ReLU(),
|
23 |
-
nn.Linear(256, 256),
|
24 |
-
nn.ReLU(),
|
25 |
-
)
|
26 |
-
|
27 |
-
def forward(self, img):
|
28 |
-
return self.classifier(self.extractor(img))
|
29 |
-
|
30 |
-
from huggingface_hub import hf_hub_download
|
31 |
-
model_file = hf_hub_download(repo_id="Muinez/Image-scorer", filename="scorer.pth")
|
32 |
-
|
33 |
-
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
34 |
-
model = ScoreClassifier().to(DEVICE)
|
35 |
-
model.load_state_dict(torch.load(model_file))
|
36 |
-
model.eval()
|
37 |
-
|
38 |
-
processor = SiglipImageProcessor.from_pretrained('google/siglip-base-patch16-512')
|
39 |
-
siglip = SiglipModel.from_pretrained('google/siglip-base-patch16-512').to(DEVICE)
|
40 |
-
|
41 |
-
def predict(img):
|
42 |
-
img = utils.preprocess_image(img)
|
43 |
-
encoded = processor(img, return_tensors="pt").pixel_values.to(DEVICE)
|
44 |
-
|
45 |
-
with torch.no_grad():
|
46 |
-
score = model(siglip.get_image_features(encoded))
|
47 |
-
|
48 |
-
return score.item()
|
49 |
-
|
50 |
-
gr.Interface(
|
51 |
-
title="Artwork scorer",
|
52 |
-
description="Predicts score (0-1) for artwork.\nCould be wrong!!!\nDoes not work very well with nsfw i.e. it was not trained on it",
|
53 |
-
fn=predict,
|
54 |
-
allow_flagging="never",
|
55 |
-
inputs=gr.Image(type="pil"),
|
56 |
-
outputs=[gr.Number(label="Score")]
|
57 |
).launch()
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import torch
|
3 |
+
from torch import nn
|
4 |
+
from transformers import SiglipImageProcessor,SiglipModel
|
5 |
+
import dbimutils as utils
|
6 |
+
|
7 |
+
class ScoreClassifier(nn.Module):
|
8 |
+
def __init__(self):
|
9 |
+
super(ScoreClassifier, self).__init__()
|
10 |
+
|
11 |
+
self.classifier = nn.Sequential(
|
12 |
+
nn.Linear(256, 1),
|
13 |
+
nn.Sigmoid()
|
14 |
+
)
|
15 |
+
|
16 |
+
self.extractor = nn.Sequential(
|
17 |
+
nn.Linear(768, 512),
|
18 |
+
nn.BatchNorm1d(512),
|
19 |
+
nn.ReLU(),
|
20 |
+
nn.Linear(512, 256),
|
21 |
+
nn.BatchNorm1d(256),
|
22 |
+
nn.ReLU(),
|
23 |
+
nn.Linear(256, 256),
|
24 |
+
nn.ReLU(),
|
25 |
+
)
|
26 |
+
|
27 |
+
def forward(self, img):
|
28 |
+
return self.classifier(self.extractor(img))
|
29 |
+
|
30 |
+
from huggingface_hub import hf_hub_download
|
31 |
+
model_file = hf_hub_download(repo_id="Muinez/Image-scorer", filename="scorer.pth")
|
32 |
+
|
33 |
+
DEVICE = 'cuda' if torch.cuda.is_available() else 'cpu'
|
34 |
+
model = ScoreClassifier().to(DEVICE)
|
35 |
+
model.load_state_dict(torch.load(model_file, map_location=torch.device('cpu')))
|
36 |
+
model.eval()
|
37 |
+
|
38 |
+
processor = SiglipImageProcessor.from_pretrained('google/siglip-base-patch16-512')
|
39 |
+
siglip = SiglipModel.from_pretrained('google/siglip-base-patch16-512').to(DEVICE)
|
40 |
+
|
41 |
+
def predict(img):
|
42 |
+
img = utils.preprocess_image(img)
|
43 |
+
encoded = processor(img, return_tensors="pt").pixel_values.to(DEVICE)
|
44 |
+
|
45 |
+
with torch.no_grad():
|
46 |
+
score = model(siglip.get_image_features(encoded))
|
47 |
+
|
48 |
+
return score.item()
|
49 |
+
|
50 |
+
gr.Interface(
|
51 |
+
title="Artwork scorer",
|
52 |
+
description="Predicts score (0-1) for artwork.\nCould be wrong!!!\nDoes not work very well with nsfw i.e. it was not trained on it",
|
53 |
+
fn=predict,
|
54 |
+
allow_flagging="never",
|
55 |
+
inputs=gr.Image(type="pil"),
|
56 |
+
outputs=[gr.Number(label="Score")]
|
57 |
).launch()
|