File size: 4,498 Bytes
fdf4694
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
from diffusers import ControlNetModel, StableDiffusionXLControlNetPipeline, AutoencoderKL
from diffusers.utils import load_image
from PIL import Image
import torch
import numpy as np
import cv2

controlnet_conditioning_scale = 0.5  # recommended for good generalization

controlnet = ControlNetModel.from_pretrained(
    "diffusers/controlnet-canny-sdxl-1.0",
    torch_dtype=torch.float16
)

vae = AutoencoderKL.from_pretrained("madebyollin/sdxl-vae-fp16-fix", torch_dtype=torch.float16)
pipe = StableDiffusionXLControlNetPipeline.from_pretrained(
    "stabilityai/stable-diffusion-xl-base-1.0",
    controlnet=controlnet,
    vae=vae,
    torch_dtype=torch.float16,
)
pipe.enable_model_cpu_offload()

low_threshold = 100
high_threshold = 200

def get_canny_filter(image):
    
    if not isinstance(image, np.ndarray):
        image = np.array(image) 
        
    image = cv2.Canny(image, low_threshold, high_threshold)
    image = image[:, :, None]
    image = np.concatenate([image, image, image], axis=2)
    canny_image = Image.fromarray(image)
    return canny_image

def process(input_image, prompt)
    canny_image = get_canny_filter(input_image)
    images = pipe(
        prompt,image=image, controlnet_conditioning_scale=controlnet_conditioning_scale,
        ).images

    return [canny_image,images[0]]
    
block = gr.Blocks().queue()

with block:
    gr.Markdown("## ControlNet SDXL Canny")
    gr.HTML('''
     <p style="margin-bottom: 10px; font-size: 94%">
                This is a demo for ControlNet SDXL, which is a neural network structure to control Stable Diffusion XL model by adding extra condition such as canny edge detection. 
              </p>
              ''')
    gr.HTML("<p>You can duplicate this Space to run it privately without a queue and load additional checkpoints.  : <a style='display:inline-block' href='https://huggingface.co/spaces/RamAnanth1/controlnet-sdxl-canny?duplicate=true'><img src='https://img.shields.io/badge/-Duplicate%20Space-blue?labelColor=white&style=flat&logo=&logoWidth=14' alt='Duplicate Space'></a> </p>")
    with gr.Row():
        with gr.Column():
            input_image = gr.Image(source='upload', type="numpy")
            prompt = gr.Textbox(label="Prompt")
            run_button = gr.Button(label="Run")
            
            
        with gr.Column():
            result_gallery = gr.Gallery(label='Output', show_label=False, elem_id="gallery").style(grid=2, height='auto')
    ips = [input_image, prompt]
    run_button.click(fn=process, inputs=ips, outputs=[result_gallery])
    # examples_list = [
    #     #         [
    #     #     "bird.png", 
    #     #     "bird",
    #     #     "Canny Edge Map"
            
    #     # ],
        
    #     #         [
    #     #     "turtle.png", 
    #     #     "turtle",
    #     #     "Scribble",
    #     #     "best quality, extremely detailed",
    #     #     'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
    #     #      1, 
    #     #     512,
    #     #     20, 
    #     #     9.0, 
    #     #     123490213,
    #     #     0.0,
    #     #     100,
    #     #     200
            
    #     # ],
    #               [
    #         "pose1.png", 
    #        "Chef in the Kitchen",
    #        "Pose",
    #     #     "best quality, extremely detailed",
    #     #     'longbody, lowres, bad anatomy, bad hands, missing fingers, pubic hair,extra digit, fewer digits, cropped, worst quality, low quality',
    #     #      1, 
    #     #     512,
    #     #     20, 
    #     #     9.0, 
    #     #     123490213,
    #     #     0.0,
    #     #     100,
    #     #     200
            
    #      ]
    # ]
    # examples = gr.Examples(examples=examples_list,inputs = [input_image, prompt], outputs = [result_gallery], cache_examples = True, fn = process)
    gr.Markdown("![visitor badge](https://visitor-badge.glitch.me/badge?page_id=RamAnanth1.ControlNet)")  

block.launch(debug = True)