MiVOLO / mivolo /data /misc.py
admin
sync
4c4ff57
raw
history blame
9.6 kB
import argparse
import ast
import re
from typing import List, Optional, Tuple, Union
import cv2
import numpy as np
import torch
import torchvision.transforms.functional as F
from scipy.optimize import linear_sum_assignment
from timm.data import IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD
CROP_ROUND_RATE = 0.1
MIN_PERSON_CROP_NONZERO = 0.5
def aggregate_votes_winsorized(ages, max_age_dist=6):
# Replace any annotation that is more than a max_age_dist away from the median
# with the median + max_age_dist if higher or max_age_dist - max_age_dist if below
median = np.median(ages)
ages = np.clip(ages, median - max_age_dist, median + max_age_dist)
return np.mean(ages)
def cropout_black_parts(img, tol=0.3):
# Create a binary mask of zero pixels
zero_pixels_mask = np.all(img == 0, axis=2)
# Calculate the threshold for zero pixels in rows and columns
threshold = img.shape[0] - img.shape[0] * tol
# Calculate row sums and column sums of zero pixels mask
row_sums = np.sum(zero_pixels_mask, axis=1)
col_sums = np.sum(zero_pixels_mask, axis=0)
# Find the first and last rows with zero pixel sums above the threshold
start_row = np.argmin(row_sums > threshold)
end_row = img.shape[0] - np.argmin(row_sums[::-1] > threshold)
# Find the first and last columns with zero pixel sums above the threshold
start_col = np.argmin(col_sums > threshold)
end_col = img.shape[1] - np.argmin(col_sums[::-1] > threshold)
# Crop the image
cropped_img = img[start_row:end_row, start_col:end_col, :]
area = cropped_img.shape[0] * cropped_img.shape[1]
area_orig = img.shape[0] * img.shape[1]
return cropped_img, area / area_orig
def natural_key(string_):
"""See http://www.codinghorror.com/blog/archives/001018.html"""
return [int(s) if s.isdigit() else s for s in re.split(r"(\d+)", string_.lower())]
def add_bool_arg(parser, name, default=False, help=""):
dest_name = name.replace("-", "_")
group = parser.add_mutually_exclusive_group(required=False)
group.add_argument("--" + name, dest=dest_name, action="store_true", help=help)
group.add_argument("--no-" + name, dest=dest_name, action="store_false", help=help)
parser.set_defaults(**{dest_name: default})
def cumulative_score(pred_ages, gt_ages, L, tol=1e-6):
n = pred_ages.shape[0]
num_correct = torch.sum(torch.abs(pred_ages - gt_ages) <= L + tol)
cs_score = num_correct / n
return cs_score
def cumulative_error(pred_ages, gt_ages, L, tol=1e-6):
n = pred_ages.shape[0]
num_correct = torch.sum(torch.abs(pred_ages - gt_ages) >= L + tol)
cs_score = num_correct / n
return cs_score
class ParseKwargs(argparse.Action):
def __call__(self, parser, namespace, values, option_string=None):
kw = {}
for value in values:
key, value = value.split("=")
try:
kw[key] = ast.literal_eval(value)
except ValueError:
kw[key] = str(value) # fallback to string (avoid need to escape on command line)
setattr(namespace, self.dest, kw)
def box_iou(box1, box2, over_second=False):
"""
Return intersection-over-union (Jaccard index) of boxes.
If over_second == True, return mean(intersection-over-union, (inter / area2))
Both sets of boxes are expected to be in (x1, y1, x2, y2) format.
Arguments:
box1 (Tensor[N, 4])
box2 (Tensor[M, 4])
Returns:
iou (Tensor[N, M]): the NxM matrix containing the pairwise
IoU values for every element in boxes1 and boxes2
"""
def box_area(box):
# box = 4xn
return (box[2] - box[0]) * (box[3] - box[1])
area1 = box_area(box1.T)
area2 = box_area(box2.T)
# inter(N,M) = (rb(N,M,2) - lt(N,M,2)).clamp(0).prod(2)
inter = (torch.min(box1[:, None, 2:], box2[:, 2:]) - torch.max(box1[:, None, :2], box2[:, :2])).clamp(0).prod(2)
iou = inter / (area1[:, None] + area2 - inter) # iou = inter / (area1 + area2 - inter)
if over_second:
return (inter / area2 + iou) / 2 # mean(inter / area2, iou)
else:
return iou
def split_batch(bs: int, dev: int) -> Tuple[int, int]:
full_bs = (bs // dev) * dev
part_bs = bs - full_bs
return full_bs, part_bs
def assign_faces(
persons_bboxes: List[torch.tensor], faces_bboxes: List[torch.tensor], iou_thresh: float = 0.0001
) -> Tuple[List[Optional[int]], List[int]]:
"""
Assign person to each face if it is possible.
Return:
- assigned_faces List[Optional[int]]: mapping of face_ind to person_ind
( assigned_faces[face_ind] = person_ind ). person_ind can be None
- unassigned_persons_inds List[int]: persons indexes without any assigned face
"""
assigned_faces: List[Optional[int]] = [None for _ in range(len(faces_bboxes))]
unassigned_persons_inds: List[int] = [p_ind for p_ind in range(len(persons_bboxes))]
if len(persons_bboxes) == 0 or len(faces_bboxes) == 0:
return assigned_faces, unassigned_persons_inds
cost_matrix = box_iou(torch.stack(persons_bboxes), torch.stack(faces_bboxes), over_second=True).cpu().numpy()
persons_indexes, face_indexes = [], []
if len(cost_matrix) > 0:
persons_indexes, face_indexes = linear_sum_assignment(cost_matrix, maximize=True)
matched_persons = set()
for person_idx, face_idx in zip(persons_indexes, face_indexes):
ciou = cost_matrix[person_idx][face_idx]
if ciou > iou_thresh:
if person_idx in matched_persons:
# Person can not be assigned twice, in reality this should not happen
continue
assigned_faces[face_idx] = person_idx
matched_persons.add(person_idx)
unassigned_persons_inds = [p_ind for p_ind in range(len(persons_bboxes)) if p_ind not in matched_persons]
return assigned_faces, unassigned_persons_inds
def class_letterbox(im, new_shape=(640, 640), color=(0, 0, 0), scaleup=True):
# Resize and pad image while meeting stride-multiple constraints
shape = im.shape[:2] # current shape [height, width]
if isinstance(new_shape, int):
new_shape = (new_shape, new_shape)
if im.shape[0] == new_shape[0] and im.shape[1] == new_shape[1]:
return im
# Scale ratio (new / old)
r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
if not scaleup: # only scale down, do not scale up (for better val mAP)
r = min(r, 1.0)
# Compute padding
# ratio = r, r # width, height ratios
new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
dw, dh = new_shape[1] - new_unpad[0], new_shape[0] - new_unpad[1] # wh padding
dw /= 2 # divide padding into 2 sides
dh /= 2
if shape[::-1] != new_unpad: # resize
im = cv2.resize(im, new_unpad, interpolation=cv2.INTER_LINEAR)
top, bottom = int(round(dh - 0.1)), int(round(dh + 0.1))
left, right = int(round(dw - 0.1)), int(round(dw + 0.1))
im = cv2.copyMakeBorder(im, top, bottom, left, right, cv2.BORDER_CONSTANT, value=color) # add border
return im
def prepare_classification_images(
img_list: List[Optional[np.ndarray]],
target_size: int = 224,
mean=IMAGENET_DEFAULT_MEAN,
std=IMAGENET_DEFAULT_STD,
device=None,
) -> torch.tensor:
prepared_images: List[torch.tensor] = []
for img in img_list:
if img is None:
img = torch.zeros((3, target_size, target_size), dtype=torch.float32)
img = F.normalize(img, mean=mean, std=std)
img = img.unsqueeze(0)
prepared_images.append(img)
continue
img = class_letterbox(img, new_shape=(target_size, target_size))
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
img = img / 255.0
img = (img - mean) / std
img = img.astype(dtype=np.float32)
img = img.transpose((2, 0, 1))
img = np.ascontiguousarray(img)
img = torch.from_numpy(img)
img = img.unsqueeze(0)
prepared_images.append(img)
prepared_input = torch.concat(prepared_images)
if device:
prepared_input = prepared_input.to(device)
return prepared_input
def IOU(bb1: Union[tuple, list], bb2: Union[tuple, list], norm_second_bbox: bool = False) -> float:
# expects [ymin, xmin, ymax, xmax], doesnt matter absolute or relative
assert bb1[1] < bb1[3]
assert bb1[0] < bb1[2]
assert bb2[1] < bb2[3]
assert bb2[0] < bb2[2]
# determine the coordinates of the intersection rectangle
x_left = max(bb1[1], bb2[1])
y_top = max(bb1[0], bb2[0])
x_right = min(bb1[3], bb2[3])
y_bottom = min(bb1[2], bb2[2])
if x_right < x_left or y_bottom < y_top:
return 0.0
# The intersection of two axis-aligned bounding boxes is always an
# axis-aligned bounding box
intersection_area = (x_right - x_left) * (y_bottom - y_top)
# compute the area of both AABBs
bb1_area = (bb1[3] - bb1[1]) * (bb1[2] - bb1[0])
bb2_area = (bb2[3] - bb2[1]) * (bb2[2] - bb2[0])
if not norm_second_bbox:
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = intersection_area / float(bb1_area + bb2_area - intersection_area)
else:
# for cases when we search if second bbox is inside first one
iou = intersection_area / float(bb2_area)
assert iou >= 0.0
assert iou <= 1.01
return iou