File size: 8,152 Bytes
4c4ff57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import logging
from typing import Optional

import numpy as np
import torch
from mivolo.data.misc import prepare_classification_images
from mivolo.model.create_timm_model import create_model
from mivolo.structures import PersonAndFaceCrops, PersonAndFaceResult
from timm.data import resolve_data_config

_logger = logging.getLogger("MiVOLO")
has_compile = hasattr(torch, "compile")


class Meta:
    def __init__(self):
        self.min_age = None
        self.max_age = None
        self.avg_age = None
        self.num_classes = None

        self.in_chans = 3
        self.with_persons_model = False
        self.disable_faces = False
        self.use_persons = True
        self.only_age = False

        self.num_classes_gender = 2

    def load_from_ckpt(self, ckpt_path: str, disable_faces: bool = False, use_persons: bool = True) -> "Meta":

        state = torch.load(ckpt_path, map_location="cpu")

        self.min_age = state["min_age"]
        self.max_age = state["max_age"]
        self.avg_age = state["avg_age"]
        self.only_age = state["no_gender"]

        only_age = state["no_gender"]

        self.disable_faces = disable_faces
        if "with_persons_model" in state:
            self.with_persons_model = state["with_persons_model"]
        else:
            self.with_persons_model = True if "patch_embed.conv1.0.weight" in state["state_dict"] else False

        self.num_classes = 1 if only_age else 3
        self.in_chans = 3 if not self.with_persons_model else 6
        self.use_persons = use_persons and self.with_persons_model

        if not self.with_persons_model and self.disable_faces:
            raise ValueError("You can not use disable-faces for faces-only model")
        if self.with_persons_model and self.disable_faces and not self.use_persons:
            raise ValueError("You can not disable faces and persons together")

        return self

    def __str__(self):
        attrs = vars(self)
        attrs.update({"use_person_crops": self.use_person_crops, "use_face_crops": self.use_face_crops})
        return ", ".join("%s: %s" % item for item in attrs.items())

    @property
    def use_person_crops(self) -> bool:
        return self.with_persons_model and self.use_persons

    @property
    def use_face_crops(self) -> bool:
        return not self.disable_faces or not self.with_persons_model


class MiVOLO:
    def __init__(
        self,
        ckpt_path: str,
        device: str = "cpu",
        half: bool = True,
        disable_faces: bool = False,
        use_persons: bool = True,
        verbose: bool = False,
        torchcompile: Optional[str] = None,
    ):
        self.verbose = verbose
        self.device = torch.device(device)
        self.half = half and self.device.type != "cpu"

        self.meta: Meta = Meta().load_from_ckpt(ckpt_path, disable_faces, use_persons)
        if self.verbose:
            _logger.info(f"Model meta:\n{str(self.meta)}")

        model_name = "mivolo_d1_224"
        self.model = create_model(
            model_name=model_name,
            num_classes=self.meta.num_classes,
            in_chans=self.meta.in_chans,
            pretrained=False,
            checkpoint_path=ckpt_path,
            filter_keys=["fds."],
        )
        self.param_count = sum([m.numel() for m in self.model.parameters()])
        _logger.info(f"Model {model_name} created, param count: {self.param_count}")

        self.data_config = resolve_data_config(
            model=self.model,
            verbose=verbose,
            use_test_size=True,
        )
        self.data_config["crop_pct"] = 1.0
        c, h, w = self.data_config["input_size"]
        assert h == w, "Incorrect data_config"
        self.input_size = w

        self.model = self.model.to(self.device)

        if torchcompile:
            assert has_compile, "A version of torch w/ torch.compile() is required for --compile, possibly a nightly."
            torch._dynamo.reset()
            self.model = torch.compile(self.model, backend=torchcompile)

        self.model.eval()
        if self.half:
            self.model = self.model.half()

    def warmup(self, batch_size: int, steps=10):
        if self.meta.with_persons_model:
            input_size = (6, self.input_size, self.input_size)
        else:
            input_size = self.data_config["input_size"]

        input = torch.randn((batch_size,) + tuple(input_size)).to(self.device)

        for _ in range(steps):
            out = self.inference(input)  # noqa: F841

        if torch.cuda.is_available():
            torch.cuda.synchronize()

    def inference(self, model_input: torch.tensor) -> torch.tensor:

        with torch.no_grad():
            if self.half:
                model_input = model_input.half()
            output = self.model(model_input)
        return output

    def predict(self, image: np.ndarray, detected_bboxes: PersonAndFaceResult):
        if detected_bboxes.n_objects == 0:
            return

        faces_input, person_input, faces_inds, bodies_inds = self.prepare_crops(image, detected_bboxes)

        if self.meta.with_persons_model:
            model_input = torch.cat((faces_input, person_input), dim=1)
        else:
            model_input = faces_input
        output = self.inference(model_input)

        # write gender and age results into detected_bboxes
        self.fill_in_results(output, detected_bboxes, faces_inds, bodies_inds)

    def fill_in_results(self, output, detected_bboxes, faces_inds, bodies_inds):
        if self.meta.only_age:
            age_output = output
            gender_probs, gender_indx = None, None
        else:
            age_output = output[:, 2]
            gender_output = output[:, :2].softmax(-1)
            gender_probs, gender_indx = gender_output.topk(1)

        assert output.shape[0] == len(faces_inds) == len(bodies_inds)

        # per face
        for index in range(output.shape[0]):
            face_ind = faces_inds[index]
            body_ind = bodies_inds[index]

            # get_age
            age = age_output[index].item()
            age = age * (self.meta.max_age - self.meta.min_age) + self.meta.avg_age
            age = round(age, 2)

            detected_bboxes.set_age(face_ind, age)
            detected_bboxes.set_age(body_ind, age)

            _logger.info(f"\tage: {age}")

            if gender_probs is not None:
                gender = "male" if gender_indx[index].item() == 0 else "female"
                gender_score = gender_probs[index].item()

                _logger.info(f"\tgender: {gender} [{int(gender_score * 100)}%]")

                detected_bboxes.set_gender(face_ind, gender, gender_score)
                detected_bboxes.set_gender(body_ind, gender, gender_score)

    def prepare_crops(self, image: np.ndarray, detected_bboxes: PersonAndFaceResult):

        if self.meta.use_person_crops and self.meta.use_face_crops:
            detected_bboxes.associate_faces_with_persons()

        crops: PersonAndFaceCrops = detected_bboxes.collect_crops(image)
        (bodies_inds, bodies_crops), (faces_inds, faces_crops) = crops.get_faces_with_bodies(
            self.meta.use_person_crops, self.meta.use_face_crops
        )

        if not self.meta.use_face_crops:
            assert all(f is None for f in faces_crops)

        faces_input = prepare_classification_images(
            faces_crops, self.input_size, self.data_config["mean"], self.data_config["std"], device=self.device
        )

        if not self.meta.use_person_crops:
            assert all(p is None for p in bodies_crops)

        person_input = prepare_classification_images(
            bodies_crops, self.input_size, self.data_config["mean"], self.data_config["std"], device=self.device
        )

        _logger.info(
            f"faces_input: {faces_input.shape if faces_input is not None else None}, "
            f"person_input: {person_input.shape if person_input is not None else None}"
        )

        return faces_input, person_input, faces_inds, bodies_inds


if __name__ == "__main__":
    model = MiVOLO("../pretrained/checkpoint-377.pth.tar", half=True, device="cuda:0")