Spaces:
Running
Running
unknown
commited on
Commit
·
47ce5f0
1
Parent(s):
bca6517
ADD application file
Browse files- app.py +91 -0
- requirements.txt +4 -0
app.py
ADDED
@@ -0,0 +1,91 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from transformers import Wav2Vec2ForSequenceClassification, Wav2Vec2Processor
|
3 |
+
import torch
|
4 |
+
import torchaudio
|
5 |
+
from io import BytesIO
|
6 |
+
|
7 |
+
# Hugging Face Model Hub'dan modelni yuklash
|
8 |
+
model_name = "Mrkomiljon/voiceGUARD/wav2vec2_finetuned_model" # Hugging Face Model Hub'dagi modelning to'liq nomi
|
9 |
+
model = Wav2Vec2ForSequenceClassification.from_pretrained(model_name)
|
10 |
+
processor = Wav2Vec2Processor.from_pretrained(model_name)
|
11 |
+
model.eval()
|
12 |
+
|
13 |
+
# Device setup
|
14 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
15 |
+
model.to(device)
|
16 |
+
|
17 |
+
# Define label mapping
|
18 |
+
id2label = {
|
19 |
+
0: "diffwave",
|
20 |
+
1: "melgan",
|
21 |
+
2: "parallel_wave_gan",
|
22 |
+
3: "Real",
|
23 |
+
4: "wavegrad",
|
24 |
+
5: "wavnet",
|
25 |
+
6: "wavernn"
|
26 |
+
}
|
27 |
+
|
28 |
+
# Define the prediction function
|
29 |
+
def predict_audio(file):
|
30 |
+
target_sample_rate = 16000 # Model's expected sample rate
|
31 |
+
max_length = target_sample_rate * 10 # 10 seconds in samples
|
32 |
+
|
33 |
+
try:
|
34 |
+
# Load the audio file
|
35 |
+
audio_bytes = file.read()
|
36 |
+
waveform, sample_rate = torchaudio.load(BytesIO(audio_bytes))
|
37 |
+
|
38 |
+
# Resample if the sample rate doesn't match the model's expected rate
|
39 |
+
if sample_rate != target_sample_rate:
|
40 |
+
resampler = torchaudio.transforms.Resample(orig_freq=sample_rate, new_freq=target_sample_rate)
|
41 |
+
waveform = resampler(waveform)
|
42 |
+
|
43 |
+
# Truncate or pad the waveform to ensure consistent input length
|
44 |
+
if waveform.size(1) > max_length:
|
45 |
+
waveform = waveform[:, :max_length] # Truncate
|
46 |
+
elif waveform.size(1) < max_length:
|
47 |
+
waveform = torch.nn.functional.pad(waveform, (0, max_length - waveform.size(1))) # Pad
|
48 |
+
if waveform.ndim > 1:
|
49 |
+
waveform = waveform[0]
|
50 |
+
|
51 |
+
# Process the audio file
|
52 |
+
inputs = processor(
|
53 |
+
waveform.squeeze().numpy(),
|
54 |
+
sampling_rate=target_sample_rate,
|
55 |
+
return_tensors="pt",
|
56 |
+
padding=True
|
57 |
+
)
|
58 |
+
input_values = inputs["input_values"].to(device)
|
59 |
+
|
60 |
+
# Perform inference
|
61 |
+
with torch.no_grad():
|
62 |
+
logits = model(input_values).logits
|
63 |
+
probabilities = torch.nn.functional.softmax(logits, dim=-1)
|
64 |
+
predicted_label = torch.argmax(probabilities, dim=-1).item()
|
65 |
+
confidence = probabilities[0, predicted_label].item()
|
66 |
+
|
67 |
+
# Map label to class name
|
68 |
+
class_name = id2label.get(predicted_label, "Unknown Class")
|
69 |
+
|
70 |
+
return {
|
71 |
+
"Class": class_name,
|
72 |
+
"Confidence": round(confidence * 100, 2)
|
73 |
+
}
|
74 |
+
except Exception as e:
|
75 |
+
return {"error": f"Error processing the audio file: {str(e)}"}
|
76 |
+
|
77 |
+
# Create the Gradio interface
|
78 |
+
iface = gr.Interface(
|
79 |
+
fn=predict_audio,
|
80 |
+
inputs=gr.Audio(type="file"),
|
81 |
+
outputs=[
|
82 |
+
gr.Label(label="Predicted Class"),
|
83 |
+
gr.Label(label="Confidence")
|
84 |
+
],
|
85 |
+
title="Audio Classification with Wav2Vec2",
|
86 |
+
description="Upload an audio file to classify it into one of the predefined categories."
|
87 |
+
)
|
88 |
+
|
89 |
+
# Launch the Gradio app
|
90 |
+
if __name__ == "__main__":
|
91 |
+
iface.launch()
|
requirements.txt
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
torchaudio
|
3 |
+
transformers
|
4 |
+
torch
|