Spaces:
Sleeping
Sleeping
# Author: aqeelanwar | |
# Created: 27 April,2020, 10:22 PM | |
# Email: [email protected] | |
import argparse | |
import dlib | |
from aux_functions import * | |
import numpy as np | |
def maskThisImages(myImg): | |
# Command-line input setup | |
parser = argparse.ArgumentParser( | |
description="MaskTheFace - Python code to mask faces dataset" | |
) | |
parser.add_argument( | |
"--path", | |
type=str, | |
default="", | |
help="Path to either the folder containing images or the image itself", | |
) | |
parser.add_argument( | |
"--mask_type", | |
type=str, | |
default="surgical", | |
choices=["surgical", "N95", "KN95", "cloth", "gas", "inpaint", "random", "all"], | |
help="Type of the mask to be applied. Available options: all, surgical_blue, surgical_green, N95, cloth", | |
) | |
parser.add_argument( | |
"--pattern", | |
type=str, | |
default="", | |
help="Type of the pattern. Available options in masks/textures", | |
) | |
parser.add_argument( | |
"--pattern_weight", | |
type=float, | |
default=0.5, | |
help="Weight of the pattern. Must be between 0 and 1", | |
) | |
parser.add_argument( | |
"--color", | |
type=str, | |
default="#0473e2", | |
help="Hex color value that need to be overlayed to the mask", | |
) | |
parser.add_argument( | |
"--color_weight", | |
type=float, | |
default=0.5, | |
help="Weight of the color intensity. Must be between 0 and 1", | |
) | |
parser.add_argument( | |
"--code", | |
type=str, | |
# default="cloth-masks/textures/check/check_4.jpg, cloth-#e54294, cloth-#ff0000, cloth, cloth-masks/textures/others/heart_1.png, cloth-masks/textures/fruits/pineapple.png, N95, surgical_blue, surgical_green", | |
default="", | |
help="Generate specific formats", | |
) | |
parser.add_argument( | |
"--verbose", dest="verbose", action="store_true", help="Turn verbosity on" | |
) | |
parser.add_argument( | |
"--write_original_image", | |
dest="write_original_image", | |
action="store_true", | |
help="If true, original image is also stored in the masked folder", | |
) | |
parser.set_defaults(feature=False) | |
args, unknown = parser.parse_known_args() | |
args.write_path = args.path + "_masked" | |
# Set up dlib face detector and predictor | |
args.detector = dlib.get_frontal_face_detector() | |
path_to_dlib_model = "shape_predictor_68_face_landmarks.dat" | |
if not os.path.exists(path_to_dlib_model): | |
download_dlib_model() | |
args.predictor = dlib.shape_predictor(path_to_dlib_model) | |
# Extract data from code | |
mask_code = "".join(args.code.split()).split(",") | |
args.code_count = np.zeros(len(mask_code)) | |
args.mask_dict_of_dict = {} | |
for i, entry in enumerate(mask_code): | |
mask_dict = {} | |
mask_color = "" | |
mask_texture = "" | |
mask_type = entry.split("-")[0] | |
if len(entry.split("-")) == 2: | |
mask_variation = entry.split("-")[1] | |
if "#" in mask_variation: | |
mask_color = mask_variation | |
else: | |
mask_texture = mask_variation | |
mask_dict["type"] = mask_type | |
mask_dict["color"] = mask_color | |
mask_dict["texture"] = mask_texture | |
args.mask_dict_of_dict[i] = mask_dict | |
# Check if path is file or directory or none | |
is_file=True | |
# Process if the path was a file | |
if is_file: | |
print("Masking image file") | |
image_path = args.path | |
write_path = args.path.rsplit(".")[0] | |
if True: | |
# Proceed if file is image | |
# masked_images, mask, mask_binary_array, original_image | |
masked_image, mask, mask_binary_array, original_image = mask_image( | |
myImg, args | |
) | |
if len(masked_image)==0: | |
return masked_image | |
else: | |
img = masked_image[i] | |
return img | |
else: | |
print("Path is neither a valid file or a valid directory") | |
print("Processing Done") | |